Properties of the Montreal functor

These notes are quite informal, so I hope I don't offend anyone.

1 Reminder

Here's a brief recap of last week:

- $G = \operatorname{GL}_2(\mathbb{Q}_p), B = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix},$
- L/\mathbb{Q}_p finite extension with uniformiser ϖ ,

•
$$\Gamma := \mathbb{Z}_p^{\times}$$

- $\mathcal{O}_{\mathcal{E}} \coloneqq \mathcal{O}_{L}[[T]], \mathcal{O}_{\mathcal{E}}^{+} = \left\{ \sum_{k \gg -\infty} a_{k} T^{k} \right\}$
- action $\Gamma, \varphi \circ \mathcal{O}_{\mathcal{E}}$ by $\sigma^a : T \mapsto (1+T)^a 1$ and $\varphi(T) = (1+T)^p 1$.
- a (φ, Γ) -module is a topological $\mathcal{O}_{\mathcal{E}}$ or $\mathcal{O}_{\mathcal{E}}^+$ -module M with continuous lifts of σ^a and φ denoted σ^a_M and φ_M such that $\Gamma \times M \to M$ is continuous.
- We defined the Montreal functor D from the category $\operatorname{Rep}_{\operatorname{tors}}(G)$ consisting of smooth $\mathcal{O}_L[G]$ -representations Π with finiteness conditions (in part. Π^K finite set for all $K \subset G$ compact open)
- For a subclass of representations, we defined this by identifying $\mathcal{O}_L[[T]]$ with $\mathcal{O}_L\left[\left[\begin{pmatrix}1 & \mathbb{Z}_p\\ 0 & 1\end{pmatrix}\right]\right]$, and matching up φ , σ^a with elements of $P^+ = \begin{pmatrix}\mathbb{Z}_p \{0\} & \mathbb{Z}_p\\ 0 & 1\end{pmatrix}$ as follows:

$$\varphi \rightsquigarrow \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & px \\ 0 & 1 \end{pmatrix}$$

$$\sigma^{a} \rightsquigarrow \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & ax \\ 0 & 1 \end{pmatrix}$$

$$\varphi_{M} \rightsquigarrow \begin{pmatrix} p & 1 \\ 0 & 1 \end{pmatrix}.$$

$$(1)$$

In the general case, for a given Π we defined sets $\mathcal{W}(\Pi)$ of "nice submodules" which were just the right size, and a set of submodules $\mathcal{W}^0(\Pi) \subset \mathcal{W}(\Pi)$ of modules "which gave standard presentation". For $W \in \mathcal{W}(\Pi)$, this gave rise to $D_W^{\natural}(\Pi) \in (\varphi, \Gamma)$ -Mod $(\mathcal{O}_{\mathcal{E}}^+)$, which were all isomorphic for different W. Taking a limit gave $D(\Pi) = \lim_W \mathcal{O}_{\mathcal{E}} \otimes_{\mathcal{O}_{\mathcal{E}}^+} D_W^{\natural}(\Pi)$ which was independent of choice. Furthermore, for $W \in \mathcal{W}^0(\Pi)$, we also defined another functor $D_W^+(\Pi)$ which had finite index in $D_W^{\natural}(\Pi)$.

Explicitly, this was given by $\Phi(I_{\mathbb{Z}_p}(W))^{\vee}$, which is something like

$$\Phi(I_{\mathbb{Z}_p}(W)) = \sum \begin{pmatrix} p^n & a \\ 0 & 1 \end{pmatrix} W, \quad \text{for } a + p^n \mathbb{Z}_p \subset \mathbb{Z}_p, \quad a \in \mathbb{Q}_p.$$
(2)

2 Étaleness of $D(\Pi)$

This is not so hard: recall that a (φ, Γ) -module M is étale if the map

$$\mathrm{Id}_R \otimes \varphi_M : \mathcal{O}_{\mathcal{E}} \otimes_{\varphi} M \to M \tag{3}$$

is an isomorphism. Since the map is given by $(r,m) \mapsto r \cdot \varphi_M(m)$, this is equivalent to saying that $\varphi_M(M)$ generates M over R.

As in the previous talk, we will use the standard presentation, $D_W^+(\Pi)$ then tensor up with $\mathcal{O}_{\mathcal{E}}$.

Lemma 2.1: Let $\psi : \bigoplus_{i=0}^{p-1} \Pi^{\vee} \to \Pi^{\vee}$ be the map defined by

$$\psi(\mu_0, ..., \mu_{p-1}) = \sum_i {p \ i \choose 0 \ 1} \mu_i.$$
(4)

Then $\psi|_{D^+_W(\Pi)}$ is injective, and its image has finite index in $D^+_W(\Pi)$.

Proof (sketch): Note that the restriction lands in $D_W^+(\Pi)$ since it is closed under P^+ . For injectivity, argue that $D_W^+(\Pi)$ is generated by elements μ_i of the form $\binom{p^n \ a}{0} W$ and for these the summands have disjoint support. So if the image is zero, we must have $\mu_i = 0$ for all i. For almost surjectivity, prove that

$$\operatorname{coker} \psi \subset \left\{ \mu \in \Pi^{\vee} : \mu|_{W} = 0 = \mu|_{\binom{p-i}{0-1}W}, \forall i \right\},$$
(5)

and this is dual to $W + \sum {\binom{p \ i}{0}} W$, which is finite length over \mathcal{O}_L because W is, hence a finite set by what James said last week.

Now we pass to $\mathcal{O}_{\mathcal{E}}^+$: the map becomes $(\mu_i) \mapsto \sum (1+T)^i \varphi(\mu_i)$, which has finite cokernel. Tensoring with $\mathcal{O}_{\mathcal{E}}$ kills the cokernel, and so we get that $\varphi(\mathbf{D}(\Pi))$ generates $\mathbf{D}(\Pi)$.

Another thing I should state (but won't prove) is:

Theorem 2.2: The functor **D** is exact.

3 Finite generation of $D(\Pi)$

This is a lot more effort. Colmez originally used an ad-hoc argument using the classification of supercuspidals of $\operatorname{GL}_2(\mathbb{Q}_p)$, but Emerton swooped in and gave a slightly more conceptual proof. We will follow his version of the proof.

The starting point in this section is the observation that $D(\Pi)$ being finitely generated is (Pontryagin) dual to being "admissible".

Setup: Let A be a DVR with uniformiser t and residue field $k := \frac{A}{t}A$. Suppose A is equipped with a local endomorphism F which reduces to the identity on k. If M is an A-module, let M[t] be the elements of m killed by t. This admits an action of F by $F \cdot m = \frac{F(t)}{t} \cdot m$ which makes sense because $F(t) \in tA$.

Definition 3.1: *M* is *admissible* if *M* is *A*-torsion and M[t] is finite-dimensional over *k*.

Proposition 3.2: The map $M \mapsto \text{Hom}(M, \text{Frac}(A)/A) =: M^{\vee}$ is an (anti)equivalence of categorie,

$$\{\text{admissible } A\text{-modules}\} \to \{\text{F.g. } \hat{A}\text{-modules}\},\tag{6}$$

where \hat{A} is the *t*-adic completion of *A*.

For a proof of this, see the masters thesis - it is not in Emerton's paper.

We want to apply this to $M = \Phi(I_{\mathbb{Z}_p}(W))$ as an $A := k_{\mathcal{E}}^+ := \mathcal{O}_L[[t]]/\varpi$ -module, since $D_W^{\natural}(\Pi) = M^{\vee}$ by definition.

A first reduction: we know that $\Pi = \Pi[\varpi^n]$ for some $n \in \mathbb{N}$, and we can assume n = 1 by an argument passing to the successive quotients $\Pi[\varpi^k]/\Pi[\varpi^{k-1}]$.

Some notation: let $M(\Pi, W)$ be the submodule of Π generated by W. So $\Phi(I_{\mathbb{Z}_n}(W)) = M(\Pi, W)$.

Lemma 3.3: M is admissible if and only if M/tM is k[F]-torsion.

Next, we apply this to the Tor-long exact sequence associated to

$$0 \to M(\Pi, W) \to \Pi \to \Pi/M(\Pi, W) \to 0, \tag{7}$$

(with respect to $\cdot \otimes k$). Let's recall how this works; over a DVR, a short exact sequence

$$0 \to M' \to M \to M'' \to 0 \tag{8}$$

gives rise to a long exact sequence

$$0 \to M'[t] \to M[t] \to M''[t] \to M'/tM' \to M/tM \to M''/tM'' \to 0.$$
(9)

This reduces the question to showing that $\left(\frac{\Pi}{M(\Pi,W)}\right)[t]$ and $\Pi/t\Pi$ are k[F]-torsion. (Cf. p.4 of Emerton's notes.) The first follows from our choice of W, I think, the point being that W generates Π over $\mathcal{O}_L[G]$. A computation using the projective resolution $0 \rightarrow k[[t]] \rightarrow k[[t]] \rightarrow k \rightarrow 0$ shows that $\Pi/t\Pi \cong H^1(N_0, \Pi)$, and this is shown to be invariant under F and finitely generated over k, proving the second claim.

Now we have proved (or sketched):

Proposition 3.4: Suppose $\Pi = \Pi[\varpi]$. Then $\Phi(I_{\mathbb{Z}_p}(W))$ is admissible, hence $D_W^{\natural}(\Pi)$ is finitely generated.

By the aforementioned reduction, this implies:

Theorem 3.5: The (φ, Γ) -module $D(\Pi)$ is étale and finitely generated.