
Properties of the Montreal functor

These notes are quite informal, so I hope I don’t offend anyone.

1 Reminder
Here’s a brief recap of last week:

• 𝐺 = GL2(ℚ𝑝), 𝐵 = (
∗
0
∗
∗),

• 𝐿/ℚ𝑝 finite extension with uniformiser 𝜛,

• Γ ≔ ℤ×𝑝 ,

• 𝒪ℰ ≔ 𝒪𝐿[[𝑇 ]], 𝒪+ℰ = {∑𝑘≫−∞ 𝑎𝑘𝑇
𝑘}

• action Γ, 𝜑 ↺ 𝒪ℰ by 𝜎𝑎 : 𝑇 ↦ (1 + 𝑇)𝑎 − 1 and 𝜑(𝑇 ) = (1 + 𝑇)𝑝 − 1.

• a (𝜑, 𝛤)-module is a topological 𝒪ℰ or 𝒪+ℰ -module 𝑀  with continuous lifts of 𝜎𝑎 and 𝜑
denoted 𝜎𝑎𝑀  and 𝜑𝑀  such that Γ ×𝑀 →𝑀  is continuous.

• We defined the Montreal functor 𝑫 from the category Reptors(𝐺) consisting of smooth
𝒪𝐿[𝐺]-representations Π with finiteness conditions (in part. Π𝐾 finite set for all 𝐾 ⊂ 𝐺
compact open)

• For a subclass of representations, we defined this by identifying 𝒪𝐿[[𝑇 ]] with
𝒪𝐿[[(

1

0

ℤ𝑝
1
)]], and matching up 𝜑, 𝜎𝑎 with elements of 𝑃+ = (ℤ𝑝−{0}

0

ℤ𝑝
1
) as follows:

𝜑 ⇝ (10
𝑥
1) ↦ (1

0
𝑝𝑥
1
)

𝜎𝑎 ⇝ (10
𝑥
1) ↦ (10

𝑎𝑥
1 )

𝜑𝑀 ⇝ (𝑝
0
1
1
).

(1)

In the general case, for a given Π we defined sets 𝒲(Π) of “nice submodules” which were just
the right size, and a set of submodules 𝒲0(Π) ⊂ 𝒲(Π) of modules “which gave standard
presentation”. For 𝑊 ∈ 𝒲(Π), this gave rise to 𝐷♮𝑊 (Π) ∈ (𝜑, Γ)-Mod(𝒪

+
ℰ ), which were all

isomorphic for different 𝑊 . Taking a limit gave 𝑫(Π) = lim𝑊 𝒪ℰ ⊗𝒪+ℰ 𝑫
♮
𝑊 (Π) which was

independent of choice. Furthermore, for 𝑊 ∈ 𝒲0(Π), we also defined another functor 𝑫+
𝑊 (Π)

which had finite index in 𝑫♮
𝑊 (Π).

Explicitly, this was given by Φ(𝐼ℤ𝑝(𝑊))
∨
, which is something like

Φ(𝐼ℤ𝑝(𝑊)) =∑(𝑝
𝑛

0
𝑎
1
)𝑊, for 𝑎 + 𝑝𝑛ℤ𝑝 ⊂ ℤ𝑝, 𝑎 ∈ ℚ𝑝. (2)

2 Étaleness of 𝑫(Π)
This is not so hard: recall that a (𝜑, Γ)-module 𝑀  is étale if the map

Id𝑅 ⊗ 𝜑𝑀 : 𝒪ℰ ⊗𝜑𝑀 →𝑀 (3)

is an isomorphism. Since the map is given by (𝑟,𝑚) ↦ 𝑟 ⋅ 𝜑𝑀(𝑚), this is equivalent to saying
that 𝜑𝑀(𝑀) generates 𝑀  over 𝑅.
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As in the previous talk, we will use the standard presentation, 𝐷+𝑊 (Π) then tensor up with
𝒪ℰ.

Lemma 2.1 :  Let 𝜓 : ⊕𝑝−1𝑖=0 Π∨ → Π∨ be the map defined by

𝜓(𝜇0,…, 𝜇𝑝−1) =∑
𝑖
(𝑝
0
𝑖
1
)𝜇𝑖. (4)

Then 𝜓|𝐷+
𝑊 (Π) is injective, and its image has finite index in 𝐷+𝑊 (Π).

Proof (sketch) :  Note that the restriction lands in 𝐷+𝑊 (Π) since it is closed under 𝑃+. For
injectivity, argue that 𝐷+𝑊 (Π) is generated by elements 𝜇𝑖 of the form (𝑝

𝑛

0
𝑎
1
)𝑊  and for these

the summands have disjoint support. So if the image is zero, we must have 𝜇𝑖 = 0 for all 𝑖.
For almost surjectivity, prove that

coker 𝜓 ⊂ {𝜇 ∈ Π∨ : 𝜇|𝑊 = 0 = 𝜇|(𝑝
0
𝑖
1
)𝑊 , ∀𝑖}, (5)

and this is dual to 𝑊 +∑(𝑝
0
𝑖
1
)𝑊 , which is finite length over 𝒪𝐿 because 𝑊  is, hence a

finite set by what James said last week. □

Now we pass to 𝒪+ℰ : the map becomes (𝜇𝑖) ↦ ∑(1 + 𝑇)𝑖𝜑(𝜇𝑖), which has finite cokernel.
Tensoring with 𝒪ℰ kills the cokernel, and so we get that 𝜑(𝑫(Π)) generates 𝑫(Π).

Another thing I should state (but won’t prove) is:

Theorem 2.2 :  The functor 𝑫 is exact.

3 Finite generation of 𝑫(Π)
This is a lot more effort. Colmez originally used an ad-hoc argument using the classification
of supercuspidals of GL2(ℚ𝑝), but Emerton swooped in and gave a slightly more conceptual
proof. We will follow his version of the proof.

The starting point in this section is the observation that 𝑫(Π) being finitely generated is
(Pontryagin) dual to being “admissible”.

Setup: Let 𝐴 be a DVR with uniformiser 𝑡 and residue field 𝑘 ≔ 𝐴
𝑡 𝐴. Suppose 𝐴 is equipped

with a local endomorphism 𝐹  which reduces to the identity on 𝑘. If 𝑀  is an 𝐴-module, let
𝑀[𝑡] be the elements of 𝑚 killed by 𝑡. This admits an action of 𝐹  by 𝐹 ⋅ 𝑚 = 𝐹(𝑡)

𝑡 ⋅ 𝑚 which
makes sense because 𝐹(𝑡) ∈ 𝑡𝐴.

Definition 3.1 :  𝑀  is admissible if 𝑀  is 𝐴-torsion and 𝑀[𝑡] is finite-dimensional over 𝑘.

Proposition 3.2 :  The map 𝑀 ↦ Hom(𝑀,Frac(𝐴)/𝐴) ≕ 𝑀∨ is an (anti)equivalence of
categorie,

{admissible 𝐴-modules} → {F.g. ̂𝐴-modules}, (6)

where ̂𝐴 is the 𝑡-adic completion of 𝐴.

For a proof of this, see the masters thesis - it is not in Emerton’s paper.
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We want to apply this to 𝑀 = Φ(𝐼ℤ𝑝(𝑊)) as an 𝐴 ≔ 𝑘+ℰ ≔ 𝒪𝐿[[𝑡]]/𝜛-module, since
𝑫♮
𝑊 (Π) = 𝑀∨ by definition.

A first reduction: we know that Π = Π[𝜛𝑛] for some 𝑛 ∈ ℕ, and we can assume 𝑛 = 1 by an
argument passing to the successive quotients Π[𝜛𝑘]/Π[𝜛𝑘−1].

Some notation: let 𝑀(Π,𝑊) be the submodule of Π generated by 𝑊 . So
Φ(𝐼ℤ𝑝(𝑊)) = 𝑀(Π,𝑊).

Lemma 3.3 :  𝑀  is admissible if and only if 𝑀/𝑡𝑀  is 𝑘[𝐹 ]-torsion.

Next, we apply this to the Tor-long exact sequence associated to

0 → 𝑀(Π,𝑊) → Π → Π/𝑀(Π,𝑊) → 0, (7)

(with respect to ⋅ ⊗ 𝑘). Let’s recall how this works; over a DVR, a short exact sequence

0 → 𝑀 ′ →𝑀 →𝑀″ → 0 (8)

gives rise to a long exact sequence

0 → 𝑀 ′[𝑡] → 𝑀[𝑡] → 𝑀″[𝑡] → 𝑀 ′/𝑡𝑀 ′ →𝑀/𝑡𝑀 → 𝑀″/𝑡𝑀″ → 0. (9)

This reduces the question to showing that ( Π
𝑀(Π,𝑊))[𝑡] and Π/𝑡Π are 𝑘[𝐹 ]-torsion. (Cf. p.4 of

Emerton’s notes.) The first follows from our choice of 𝑊 , I think, the point being that 𝑊
generates Π over 𝒪𝐿[𝐺]. A computation using the projective resolution
0 → 𝑘[[𝑡]] → 𝑘[[𝑡]] → 𝑘 → 0 shows that Π/𝑡Π ≅ 𝐻1(𝑁0, Π), and this is shown to be invariant
under 𝐹  and finitely generated over 𝑘, proving the second claim.

Now we have proved (or sketched):

Proposition 3.4 :  Suppose Π = Π[𝜛]. Then Φ(𝐼ℤ𝑝(𝑊)) is admissible, hence 𝑫♮
𝑊 (Π) is

finitely generated.

By the aforementioned reduction, this implies:

Theorem 3.5 :  The (𝜑, 𝛤)-module 𝑫(𝛱) is étale and finitely generated.
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