TALK 2: Representations of $\operatorname{Gal}(\bar{F} / F)$ and mod P LLC for $G L_{2}\left(Q_{p}\right)$

1. Galois groups

Let \mathcal{F} / Q_{p} finite ext, with uniformizer σ, residue field $k_{F} \simeq \mathbb{F}_{q}$. Let $F=$ alg, closure of $\left.F, \Gamma_{F}:=\operatorname{GalCF} / F\right)$.

$E_{n}=F^{u r}\left(\infty^{\frac{1}{n}}\right)$ unique ext of deg n over Fur if $(n, p)=1$.
$F_{n}=F\left(\zeta_{q} q^{1}\right)$ unique ext of deg n over F
$I_{F}=\operatorname{Gal}\left(\bar{F} / F^{w r}\right)=$ inertia subgroup.
$A_{F}=\operatorname{Gal}\left(F / F^{+r}\right)=$ wild inertia (prop + quite big)
By Kummer theory, \exists canonical isomorphism (independent of choice)

$$
\begin{aligned}
\text { GallE } \left.E_{n} / \text { Fur }\right) & \sim \mu_{n}(\bar{F}) \\
\sigma & \longrightarrow\left(\omega^{1 / n}\right) / \sigma^{1 / n}
\end{aligned}
$$

$$
\text { Gal(Ftr/Fur) }=\lim _{(n, p) 21} \operatorname{Gal}\left(E_{n} / F^{u r}\right)=\lim _{(n, p)=1} \mu_{n}(F) \cong \prod_{l \neq p} X_{l}
$$

$$
\operatorname{Gal}\left(F^{t r} / F^{u r}\right)=\frac{\lim }{n} \operatorname{Gal}\left(E q^{n}-1 / F^{u r}\right)=\lim _{n}^{n} \mu_{q^{n}-1}(F)=\lim _{n}^{n}\left[k_{F_{n}}^{x}\right]=\lim _{n} k_{F_{n}}^{k}
$$

2. Galois reps over \bar{F}_{p} $\cong \lim _{n} \mathbb{F}_{q^{n}}$
2.1 1-dimensinnal Gal(F/F)-reps

Lemma 1: Any cts character $\theta: I_{F} \rightarrow \bar{F}_{p}^{x}$ factors as

$$
\theta: I_{F} \rightarrow I_{F} / P_{F}=\lim _{n} k_{F_{n}}^{x} \cong{\underset{V}{n}}^{\lim _{n}} \mathbb{F}_{q^{n}}^{x} \rightarrow \mathbb{F}_{q}^{\times} \xrightarrow{\bar{\theta}} \mathbb{F}_{p}^{x}
$$

Pf:- First, want to show $\theta\left(P_{F}\right)$ is finite.

- ker A open by cts. So (herA) nf open and normal in Ps. So $A_{F} /(k e r \theta) \cap P_{f}$ is a A-group (finite)
- sn $\theta(P F)$ finite $\Rightarrow \theta\left(P_{f}\right)=1 \Rightarrow P_{F} \leq \operatorname{ker} \theta$.
- $\theta: I_{F} / P_{f} \longrightarrow \bar{F}_{p}^{x}$ has open kennel still, so θ factors through finite quotient of I_{F} / A_{f}.

Definition 2 (Sere's fundamental characters): For $n \geq 1$,
$\omega_{n}: I_{F} \rightarrow I_{F} / A_{F}=\lim _{\leftarrow_{m}} k_{F_{m}}^{x} \approx \lim _{m} \mathbb{F}_{q^{m}}^{x} \rightarrow \mathbb{F}_{q^{n}}^{x} \subset \mathbb{F}_{p}^{x}$
Proposition 3:

(b) $\omega_{n}^{n^{n}-1}=\mathbb{1}$, the trivial character.
(c) Every cts character $\theta: I_{F} \longrightarrow \mathbb{F}_{p} \times$ can be written as w_{n}^{r} for some $n \geq 1$ and $0 \leq r<q^{n-1}$ primitive,
Pf: (a) see notes.
(b) $\omega_{n}\left(I_{F}\right) \subseteq \mathbb{F}_{q}{ }^{x}$ r is not divisible by
(c) By Lemma 1 , $\frac{q^{n}-1}{q^{d}-1}=1+q^{d}+\cdots+q^{\left(\frac{n}{d}-1\right) d}$
for some proper divisor dian

But $\bar{\theta}\left(\mathbb{F}_{q^{n}}^{x}\right) \subseteq \mathbb{F}_{q^{n}}$, so $\bar{\theta} \in \operatorname{Hom}\left(\mathbb{F}_{q^{n}}^{x}, \mathbb{F}_{q^{n}}^{x}\right)=\operatorname{Hom}\left(C_{q^{n}-1}, C_{q^{n}-1}\right)$
so $\bar{\theta}$ is a power of the identity map $\mathbb{F}_{q^{x}}^{x} \longrightarrow \mathbb{F}_{q^{n}}^{x}$
$=\omega_{n}$
Lemma 4 : Let φ be a lift of Frob to Γ_{F} / P_{F}. Let $\tau \in I_{F} / P_{F} \leqslant \Gamma_{F} / P_{F}$. Then $\varphi \tau \varphi^{-1}=\tau^{q}$ in Γ_{F} / P_{F}
$\begin{aligned} \text { Lemma 5: } & w_{n}: I_{F} \longrightarrow \overline{\mathbb{F}}_{p}^{x} \text { can be extended (non-uniquely) to } \Gamma_{F} \\ & \Leftrightarrow n=1\end{aligned}$
Pf: (\Rightarrow) Suppose ω_{n} extends to Γ_{F}. Let $\varphi \in \Gamma_{F}$. lift Fob o let $\tau \in I_{F}$.

$$
\begin{aligned}
\omega_{n}(\tau) & =\omega_{n}(\varphi) \omega_{n}(\tau) \omega_{n}\left(\varphi^{-i}\right) \\
& =\omega_{n}\left(\varphi \tau \varphi^{-1}\right) \quad\left(\omega_{n} \text { factors through } I_{F} / A\right) \\
& =\omega_{n}(\tau)^{q}
\end{aligned}
$$

So ω_{n} has image in $\mathbb{F}_{q}^{x} \Rightarrow \mathbb{F}_{q}{ }^{n} \subseteq \mathbb{F}_{q}^{x} \Rightarrow n=1$.
Corollary 6: Any ats character $x: \Gamma_{F} \rightarrow \bar{F}_{p} \times$ is of the form

$$
w_{1}^{r} \mu_{\lambda} \quad(0 \leq r<q-1)
$$

where $\mu_{\lambda}: \Gamma_{F} \rightarrow \Gamma_{F} / I_{F} \longrightarrow \bar{F}_{p}^{x}$ sends $\varphi \mapsto \lambda$.
2.2 n-dimensional Gal(F/F)-reps

Proposition 7: Let $(e, V): \Gamma_{F} \rightarrow G L_{n}\left(\mathbb{F}_{p}\right)$ cts irrep. Then

$$
e I_{F}=\bigoplus_{i=1}^{n} \omega_{m_{i}}^{r_{i}} \quad\left(0 \leqslant r_{i}<q^{m_{i}}-1\right)
$$

Pf: $\operatorname{since} P_{F}$ is prop, e is month $\bmod p$ rep $\Rightarrow V^{P_{F}} \neq 0$.
$P_{F} \checkmark \Gamma_{F} \Rightarrow V_{F} \circlearrowright \Gamma_{F} ; V$ irred $\Rightarrow V=V_{F} \Rightarrow$
So $e: \Gamma_{F} \rightarrow \Gamma_{F} / P_{F} \longrightarrow G \operatorname{Ln}\left(\mathbb{F}_{P}\right)$.

$$
p I_{I_{F}}: I_{F} \longrightarrow I_{F} / P_{F} \longrightarrow G \operatorname{Ln}\left(\overline{\mathbb{F}}_{P}\right)
$$

$\begin{aligned} e^{I_{F}} \text { cts } & \Rightarrow e_{I_{F}} \text { factors through finite quotient of } I_{F} / P_{f} \cong \prod_{l \neq p} \mathbb{Z}_{l} \\ & \Rightarrow \text { factors through } H \quad \# H, p)=1 .\end{aligned}$
\Rightarrow pol If factors through $H,(\# H, p)=1$.
Maschhe + Schur \Rightarrow result.
Proposition 8: Let $\Gamma_{F_{n}}=\left\langle I_{F}, \varphi^{n}\right\rangle$.
(i) φ^{-1} acts by n-cycle on $\left\{\omega_{m_{i}}^{r_{i}}\right\}$, so $\varphi^{n}\left(\omega_{m_{i}}^{r_{i}}\right) \subseteq \omega_{m_{i}}^{r_{i}} \forall i=1, \ldots, n$.

Deduce m_{i} in for all (so can choose m_{i} un $\forall i$)
(ii) If $m \mid n$, then ω_{m} extends to $\Gamma_{F_{n}}$ by setting $\omega_{n}\left(\varphi^{n}\right)=1$.
(iii) $\exists k_{\lambda}: \Gamma_{F_{n}} \longrightarrow \Gamma_{F_{n}} / I_{F} \longrightarrow \mathbb{F}_{p}^{x}$ д $R_{\lambda}\left(\varphi^{n}\right)^{2} \lambda$.

$$
\text { Pl } \Gamma_{F_{n}}=\bigoplus_{i=1}^{n}\left(\omega_{n}^{r q^{i-1}} k_{\lambda}\right)
$$

Pf : (i) Action by n-cycle is by irreducibility of e.

- Let $v \in \omega_{m_{i}}^{r_{i}}$ and $\tau \in I_{F}$. Then

$$
\tau\left(\varphi^{-1} v\right)=\varphi^{-1} \tau^{q}(v)=\omega_{m_{i}}^{r_{i}}(\tau)^{q}\left(\varphi^{-1} v\right)
$$

So $\varphi^{-1} v \in \omega_{m_{i}}^{q_{i}}$. Then

$$
\begin{aligned}
\varphi^{-n} v \in \omega_{m_{i}}^{r_{i}} & \Rightarrow \omega_{m_{i}}^{r_{i}}=\omega_{m_{i}}^{r_{i} q^{n}} \\
& \Longrightarrow \omega_{m_{i}}^{r_{i}}\left(I_{F}\right) \in \mathbb{F}_{q^{n}}^{x} \\
& \Longrightarrow \text { can set } m_{i}=n \forall i
\end{aligned}
$$

(ii.) Just try to ob it.
(iii) Let $m_{1}=n$ and $r=r_{1}$. By part c_{i}),

$$
\begin{aligned}
\rho \mid \Gamma_{F_{n}} & =\omega_{n}^{r} k_{\lambda} \oplus \varphi^{-1}\left(\omega_{n}^{r} k_{\lambda}\right) \oplus \cdots \oplus \varphi^{-(n-1)}\left(\omega_{n}^{r} k_{\lambda}\right) \\
& =\omega_{n}^{r} k_{\lambda} \oplus \omega_{n}^{r q} k_{\lambda} \oplus \cdots \oplus \omega_{n}^{r q^{n-1}} k_{\lambda}
\end{aligned}
$$

Corollary 9: Let $0: \Gamma_{F} \longrightarrow G L_{n}\left(\mathbb{F}_{p}\right)$ ats irrep. Then

$$
P \cong \operatorname{lnd} \Gamma_{F_{n}}^{\Gamma_{n}}\left(\omega_{n}^{r} k_{\lambda}\right) \quad\binom{\text { some } 0 \leqslant \Gamma_{1}<q^{n}-1}{\text { some } \lambda \in \mathbb{F}_{p}}
$$

Corollary $10:$ Let $p: \Gamma_{\mathbb{R}_{p}} \rightarrow G L_{2}\left(\overline{\mathbb{F}_{p}}\right)$ cts irrep. Then

$$
\rho \cong \ln _{\Gamma_{\mathbb{Q}_{p}}}^{\Gamma_{\mathbb{Q}_{p}}}\left(\omega_{2}^{r} k_{\lambda}\right) \quad\binom{0 \leq r<p^{2}-1}{\lambda \in \mathbb{F}_{p}^{x}}
$$

Theorem $11:$ Let $p: \Gamma_{\mathbb{Q}_{p}} \rightarrow G L_{2}\left(\overline{\mathbb{F}}_{p}\right)$ cots irrep. Then
(Thu 1.1 of $) \quad \rho \cong \rho(r, x):=\operatorname{lnd}_{\Gamma Q_{p_{p}}}^{\Gamma}\left(\omega_{2}^{r+1}\right) \otimes x$

- $r \in\{0, \ldots, p-1\}$
- $x: \Gamma_{\mathbb{Q}_{p}} \rightarrow \overrightarrow{\mathbb{F}}_{p}^{x}$ smooth.

$$
\left.\operatorname{lnd}_{\Gamma_{Q_{p}^{2}}}^{\Gamma_{p}}\left(\omega_{2}^{r} k_{\lambda}\right) \cong \ln \Gamma_{\Gamma_{Q_{p}^{2}}}^{\Gamma_{\mathbb{Q}_{p}}}\left(\omega_{2}^{r}\right) \otimes \mu_{\lambda_{0}} j \quad \mu_{\lambda_{0}}\right|_{\Gamma_{\mathbb{R}_{p}}}=k_{\lambda}
$$

- $\operatorname{In} d_{\Gamma_{Q_{p}}}^{Q_{Q \rho}}\left(w_{2}^{r}\right)$ reducible $\Leftrightarrow(\beta+1) \mid r$
$\left.-\ln \Gamma_{R_{Q_{p}}}^{Q_{p}}\left(\omega_{2}^{r}\right) \approx \ln \Gamma_{Q_{p^{2}}}^{\sum_{Q_{p}}}\left(\omega_{2}^{r-(p+1)} \omega\right) \approx \operatorname{lnd} \prod_{Q_{p^{2}}}^{\Gamma} \omega_{2}^{r-(p+1)}\right) \otimes \omega$

$$
\left(\omega:=\omega_{1}=\omega_{2}^{1+p}\right)
$$

3. (semi-simple) mod P LLC for $G L_{2}\left(\left(_{p}\right)\right.$

Let $G=G L_{2}\left(\mathbb{Q}_{p}\right), K=G L_{2}\left(Z_{p}\right), Z \approx \mathbb{Q}_{p}^{x}$ centre of G.

$$
\pi\left(r_{0} \lambda, x\right)=\frac{c-\ln d_{k z}^{G}\left(\operatorname{syn}^{r} \mathbb{F}_{p}^{2}\right)}{\left(T_{p}-\lambda\right)} \otimes(x \cdot \operatorname{det}) \quad\left(\begin{array}{l}
D \leq r<p-1 \\
x: Q_{p}^{x} \rightarrow \mathbb{F}_{p}^{x} \\
\lambda \in \mathbb{F}_{p}
\end{array}\right)
$$

Let $x_{0} w:\left\{\begin{array}{l}\mathbb{Q}_{p}^{x} \rightarrow \mathbb{F}_{p}^{x} \\ \Gamma_{\mathbb{Q}_{p}} \rightarrow \mathbb{F}_{p}^{x}\end{array}\right.$ via LCFT and $\lambda \in \mathbb{F}_{p}$

- For $r \in\{0, \ldots, p-1\}, \quad \rho(r, x) \longleftrightarrow \pi(r, 0, x)$
- For $r \in\{0, \ldots, p-2\}, \lambda \neq 0$,

$$
\left(\omega^{r+1} \mu_{\lambda} \oplus \mu_{1 / \lambda}\right) \otimes x \longleftrightarrow \pi(r, \lambda, x)^{s s} \oplus \pi\left(p-3-r, 1 / \lambda, \omega^{r+1} x\right)^{s s}
$$

Note: Objects on Galois side have determinant $\omega^{r+1} x^{2}$. objects on automorphic side have central character $w^{r} x^{2}$.

