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1. The goal and strategy

Let F be a totally real field, and E/F be a totally imaginary extension. Let c ∈ Gal(E/F )
denote the unique non-trivial element, which we call “complex conjugation”. We want to
explain the ideas behind (some cases of) the following theorem.

Theorem 1.1. Let n ≥ 2. If

(i) π is a cuspidal automorphic representation of GLn(AF ),
(ii) π∨ = π (self-dual), and
(iii) π∞ is regular and algebraic,

then for each prime ℓ and ιℓ : Qℓ
∼−→ C, there exists a semisimple continuous representation

ρℓ,ιℓ(π) : Gal(F/F ) → GLn(Qℓ)

such that

(a) ρℓ,ιℓ(π)v is unramified for all but finitely many places v of F ,
(b) ρℓ,ιℓ(π)v is de Rham at the places v | ℓ, and
(c) (local-global compatibility) for every finite place v of F ,

WD(ρℓ,ιℓ(π)|Gal(F v/Fv)
)F–ss ∼= ι−1

ℓ LLCv(πv).

Theorem 1.2 (Theorem 1.3 [Shi09]). Let n ≥ 2. If

(i) Π is a cuspidal automorphic representation of GLn(AE),
(ii) Π∨ = Π ◦ c (conjugate self-dual), and
(iii) Π∞ is regular and algebraic,

then for each prime ℓ and ιℓ : Qℓ
∼−→ C, there exists a semisimple continuous representation

ρℓ,ιℓ(Π) : Gal(E/E) → GLn(Qℓ)

such that

(a) ρℓ,ιℓ(π)w is unramified for all but finitely many places w of E,
(b) ρℓ,ιℓ(π)w is de Rham at the places w | ℓ, and
(c) (local-global compatibility) for every finite place w of E,

WD(ρℓ,ιℓ(Π)|Gal(Ew/Ew))
F–ss ∼= ι−1

ℓ LLCv(Πw).

Theorem 1.1 can be deduced from Theorem 1.2 via the following pipeline:

π Π ρℓ,ιℓ(Π) ρℓ,ιℓ(π).
base change Theorem 1.2 patching

We sketch the ideas behind the proof (of some cases) of Theorem 1.2 first, and then we
describe how to reduce from Theorem 1.1 to Theorem 1.2 at the end. We do not attempt to
prove anything in these notes, but we do try to highlight some key ideas.
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Remark 1.3. In Theorem 1.1 and Theorem 1.2, we have opted to work with

(i) regular algebraic self-dual cuspidal (RASDC), and
(ii) regular algebraic conjugate self-dual cuspidal (RACSDC)

automorphic representations. More generally, we can work with

(a) regular algebraic essentially self-dual cuspidal (RAESDC), and
(b) regular algebraic essentially conjugate self-dual cuspidal (RAECSDC)

automorphic representations (see [BLGHT11] for the definition). We should also be able
to attach compatible systems of ℓ-adic Galois representations to RAESDC and RAECSDC
automorphic representations. This might involve a bit more work.

The proof of Theorem 1.2 can be conceptualized as the following pipeline:

Π on GLn(AE) π1 on U1(n) π2 on U2(n) ρℓ,ιℓ(Π)
descent Jacquet-Langlands cohomology

where

(i) U1(n) is the quasi-split unitary group in n variables defined over F ; that is, U1(n) is
quasi-split at all places, including the infinite places where:

U1(n)∞ ∼= U(⌊n
2
⌋, ⌈n

2
⌉)[F :Q].

(ii) U2(n) is a unitary group in n variables defined over F that is quasi-split at all of the
finite places, but where at the infinite places we have

U2(n)∞ ∼= U(n− 1, 1)× U(n)[F :Q]−1.

The cohomology of the Shimura variety attached to U2(n) has the right dimension for us to
be looking for Galois representations in its cohomology. We elaborate on this later.

2. Classification of unitary groups

Let E/F be a (separable) quadratic algebra with Galois group {1, c}, where c is the
non-trivial automorphism. Let V be a free E-module of rank n.

Definition 2.1. A Hermitian form on V is a non-degenerate pairing h : V × V → E which
satisfies the following relations for all v, w ∈ V :

(i) h(αv, βw) = α · c(β)h(v, w) and
(ii) h(v, w) = c(h(w, v)).

Definition 2.2. Let (V, h) be a Hermitian space over E. The unitary group U(V ) is the
subgroup of GL(V ) that preserves h, that is, U(V ) := {g ∈ GL(V ) : h(gv, gw) = h(v, w)}.
The associated algebraic group defined over F has functor of points given by:

U(V )(R) := {g ∈ GLE⊗FR(V ⊗F R) : h(gv, gw) = h(v, w) for all v, w ∈ V ⊗F R}.
If E is a field (i.e. E ̸= F × F ), then we say that U(V ) is a true unitary group.

We eventually want to classify unitary groups over a totally real number field. First, we
give a classification of unitary groups over a characteristic zero local field. We refer the
reader to [Har07a] and [Bel09] for more details.

(i) If E = C and F = R, then any n-dimensional Hermitian space over C is isomorphic to
one of the form V p,q := (V +)p ⊕ (V −)q with p+ q = n, where
(a) V + ∼= C has Hermitian form h+(z, w) = zw.
(b) V − ∼= C has Hermitian form h−(z, w) = −zw.
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Let U(p, q) := U(V p,q) be the associated unitary group over R. Here are some facts.
(a) U(p, q) ∼= U(q, p) are the only isomorphisms.
(b) U(n) := U(n, 0) = U(0, n) is compact; the rest are not.
(c) U(⌊n

2
⌋, ⌈n

2
⌉) is the unique quasi-split Lie group.

(ii) Let E/F be a quadratic extension of p-adic fields. For each n, there is a list of two
n-dimensional Hermitian spaces over E, call them V + and V −. If n is even, then U(V +)
and U(V −) are not isomorphic. Only one of them, say U(V +), is quasi-split in the sense
that it contains an F -rational Borel subgroup. If n is odd, then U(V +) ∼= U(V −).

(iii) If E = F × F is a product of p-adic fields, then for each n, there is a unique unitary
group over F associated to an n-dimensional Hermitian space over E, which is GLn /F .
(This is not a true unitary group.)

We attach Hasse invariants (ϵ) to these local unitary groups.

(i) Let E = C and F = R.

ϵ(U(p, q)) :=

{
1 if p+ q is odd,

(−1)m−p if p+ q = 2m is even.

(ii) Let E/F be a quadratic extension of p-adic fields. Set ϵ(U(V +)) = 1 always.

ϵ(U(V −)) :=

{
1 if n is odd,

−1 if n is even.

(iii) Let E = F × F be the product of p-adic fields. Set ϵ(GLn /F ) = 1 always.

Let E be a CM field, and F be its maximal totally real subfield. We can now state the
classification of unitary groups defined with respect to E/F .

Theorem 2.3. For each place v of F that is not split in E, choose a sign ϵv. For all but
finitely many v, including those which split in E, set ϵv = 1. Then there exists a global
unitary group G = U(V ) defined over F if and only if

∏
v ϵv = 1. In particular, if n is odd,

then any collection of local unitary groups can be realized as a global unitary group.

3. Descent to a unitary group

Let E be a CM field, and F be its maximal totally real subfield.

Theorem 3.1 (Theorem 3.1.2 [HL04]).
Let Π be a regular algebraic conjugate self-dual cuspidal automorphic representation of

GLn(AE) such that Πw,Πwc are supercuspidal for at least one finite place w ̸= wc of E.
Then Π descends to U1(n); that is, Π is the weak base change of a regular algebraic cuspidal
automorphic representation π1 for U1(n)(AF ).

4. Jacquet-Langlands transfer between unitary groups

General Principle 4.1 (p. 5 [Har07a], p. 10 [Har07b]).

(i) The only obstruction to the transfer of L-packets between inner forms is local.
(ii) Let K be a local field. Let G,H be inner forms of a reductive group over K. If G is

quasi-split, then there are no local obstructions to transfer L-packets from H to G.
(iii) Let G,H be inner forms of a reductive group over R. If G admits a discrete series, in

which case so does H, then there are no local obstructions to the transfer of discrete
series L-packets from H to G.
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The current setup is that we have an automorphic representation π1 on U1(n)(AF ) that
we want to transfer to any unitary group U over F such that

U∞ ∼= U(n− 1, 1)× U(n)[F :Q]−1.

General principle (i) tells us that, after picking such a U , the only obstructions to making
this transfer will be local. Since (π1)∞ is discrete series, general principle (iii) tells us that
there are no local obstructions at ∞ to making this transfer for any choice of U . General
principle (ii) finally tells us that we should be safe if we can choose that U is quasi-split at
all of the finite places. So we should look for a unitary group U such that:

(i) U∞ ∼= U(n− 1, 1)× U(n)[F :Q]−1

(ii) Uv is quasi-split at all places v of F

The classification of global unitary groups tells us that this is possible when:

(i) n is odd, or
(ii) n ≡ 2 (mod 4) and [F : Q] is odd.

Of course, all of these are just vague heuristics, until they are proved for each instance that
we are interested in. Let me state some concrete results.

Theorem 4.2 (Theorem 3.1.6 [HL04]).
Let S0 be a set of finite places of F split in E. Assume |S0| ≥ 2. Let U,U ′ be two inner

forms of U1(n). Let S be a set of places containing S0 such that:

U(AS
F )

∼= U ′(AS
F ).

Let π be a cuspidal automorphic representation of U such that

(i) π∞ is regular algebraic
(ii) πS∞ is a supercuspidal representation of US∞ (i.e. πv is supercuspidal for all v ∈ S∞)
(iii) JLv(πv) is supercuspidal for all v ∈ S0

Then there exists a cuspidal automorphic representation π′ of U ′ such that for all v /∈ S:

πv
∼= π′

v.

For us, we can apply the theorem to U := U1(n) and U ′ := U2(n). We remark that
this more stringent condition that JLv(πv) is supercuspidal implies that we are given more
freedom to choose our U2(n) with the fixed choice of U2(n)∞. In particular, we can allow
U2(n) to be non-quasi-split at some of the finite places, which would allow us to treat more
cases of when n is even, rather than just the n ≡ 2 (mod 4) and [F : Q] ≡ 1 (mod 2) case.

5. Cohomology of a unitary Shimura variety

Theorem 5.1 (Theorem 1.5 [Har07b]).
Let Π be a RACSDC automorphic representation of GLn(AE). Suppose either n is odd,

or [F : Q] is odd and n ≡ 2 (mod 4). Then ρℓ,ιℓ(Π) can be realized (up to dualizing and
twisting by characters) in Hn−1(Sh(U2(n)), L(Π∞)∨ℓ ), where Sh(U2(n)) is the Shimura variety
attached to the unitary group U2(n).

Let G := ResF/Q U2(n) be a reductive group over Q.

G(R)+/A+
∞K+

∞ =
U(n− 1, 1)× U(n)[F :Q]−1

U(n− 1)× U(1)× U(n)[F :Q]−1
∼=

U(n− 1, 1)

U(n− 1)× U(1)
.
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This space has R-dimension:

n2 − ((n− 1)2 + 1) = 2(n− 1).

So its C-dimension is:

n− 1.

So the Shimura variety Sh(U2(n)) over E has dimension n−1. This is compatible with what
we are looking for in two ways:

(i) By looking in Hn−1, we are looking in the middle degree of cohomology, which is where
we should expect to find the automorphic representation π2 on U2(n), which is cuspidal
and discrete series at infinity.

(ii) For a modular form f , let πf denote the associated automorphic representation. If we
choose a modular curve X of level Nf , then we saw that

H1(X,Qℓ)πf
= H0,1 ⊕H1,0 = ρπf

with one dimension coming from each of H0,1 and H1,0. In our case, if the weight of
π2 is such that L((π2)∞)∨ℓ

∼= Qℓ, and if we choose a Shimura variety Sh(U2(n)) of the
right level corresponding to π2, then we can expect that

Hn−1(Sh(U2(n)),Qℓ)π2 = H0,n−1 ⊕ · · · ⊕Hn−1,0 ∼= ρπ2

with one dimension coming from each H i,j.

6. The reduction: base change and patching

Let F be a fixed number field. Let I ̸= ∅ be a set of cyclic Galois extension E/F , of
prime degree qE. We allow the prime qE to vary with E ∈ I. For every E ∈ I, we assume
we are given an n-dimensional continuous semisimple ℓ-adic Galois representation

ρE : ΓE := Gal(Q/E) → GLn(Qℓ).

Here ℓ is a fixed prime. The family of representations {ρE} is assumed to satisfy:

(a) Galois-invariance: ρσE
∼= ρE for all σ ∈ Gal(E/F ),

(b) Compatibility: ρE|ΓEE′
∼= ρE′ |ΓEE′ for any E,E ′ ∈ I.

These conditions are certainly necessary for ρE to be of the form ρ|ΓE
for some ρ of ΓF . In

fact, (a) and (b) are also sufficient conditions [Sor20, Lemma 2] if the collection I is large
enough in the following sense.

Definition 6.1 (Definition 1 [Sor20]).
For a finite set S of places of F , we say that a non-empty collection I of cyclic extensions

E/F of prime degree is S-general if for any finite place v /∈ S of F there exist infinitely
many E ∈ I in which v splits completely.

Example 6.2. The family of imaginary quadratic extensions

I = {Q(
√
−p)/Q : p prime}

over Q is ∅-general. If F is a totally real field, then

FI

is a ∅-general family of CM extensions of F .
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