
Attaching Galois representations to weight 1 modular
forms

1 Review of Galois representations for higher weight
Some references I used were:
• these notes by Tom Lovering,
• these lecture notes by Johannes Anschütz,
• these notes by Bas Edixhoven,
• the original paper by Deligne and Serre, [1].

Most of what follows comes from one of these.

Last week, Arun explained how we can attach Galois representations to weight 2 modular forms by
studying various cohomology theories for the modular curve 𝑋 = 𝑋1(𝑁). The key ingredients
were:
• The Eichler–Shimura isomorphism,

𝐻0(𝑋,Ω1𝑋) ⊕ 𝐻0(𝑋,Ω1𝑋) ≅ 𝐻1(𝑋,ℂ), (1)

where the left hand side can be interpreted as weight 2 modular forms via 𝑓 ⇝ 𝑓(𝑧)𝑑𝑧 and the
right hand side is singular cohomology.

• By fixing an isomorphism ℂ ≅ ℚℓ, we can compare singular cohomology with étale cohomology,

𝐻1(𝑋,ℂ) ≅ 𝐻1(𝑋,ℚℓ) ≅ 𝐻
1
ét(𝑋,ℚℓ), (2)

where the right hand side has a natural Galois action.
• The Eichler–Shimura relation, which gives a relationship between the 𝑝-th Hecke operator and the

Frobenius at 𝑝. To make this precise, we compare the étale cohomology of 𝑋 with that of its
special fibre 𝑋𝔽𝑝 , where we found that the action of the “geometric” Frobenius was compatible
with the action of the Frobenius element at 𝑝, 𝜎𝑝 ∈ 𝐺ℚ ≔ Gal(ℚ/ℚ). This eventually tells us that
the characteristic polynomial of 𝜌𝑓(𝜎𝑝) is 𝑇 2 − 𝑎𝑝(𝑓)𝑇 + 𝜀(𝑝)𝑝, where 𝜀 is the Nebentypus
character of 𝑓 , and this implies that 𝐿(𝑠, 𝜌𝑓) = 𝐿(𝑠, 𝑓).

This was proved by Eichler and Shimura, but not phrased in the language of Galois representations
or étale cohomology, which came later. However, this was indispensible for Deligne’s contruction in
weight ≥ 2. [2]

1.1 Geometric modular forms
In this section, we describe modular forms of level Γ1(𝑁) in terms of the geometry of 𝑌 = 𝑌1(𝑁).
Let 𝑆 be a scheme over Specℤ[1/𝑁]. Since 𝑌 / Specℤ[1/𝑁] is constructed as a moduli space of
elliptic curves with extra data, the general yoga of representable functors gives a universal elliptic
curve 𝜋 : ℰ → 𝑌 . We define 𝜔 ≔ 𝜋∗Ω1ℰ/𝑌 .

This might seem a bit mysterious, but in practice, it’s quite simple: ℰ is given by an equation

ℰ : 𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2, (3)

where 𝑎1, 𝑎2, 𝑎3 are holomorphic modular forms of level 𝑁  with coefficients in ℤ[1/𝑁], and these
can be computed quite explicitly. The sheaf 𝜔 is also relatively easy to understand: at a point
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𝑥 = (𝐸, 𝑃) ∈ 𝑌 , the stalk is given by 𝜔𝑥 = Ω1𝐸 . We can also extend this to 𝑋 via the natural
inclusion 𝑗 : 𝑌 ↪ 𝑋.

We then define a weight 𝑘 modular form to be a global section in Γ(𝑌 , 𝜔𝑘). What is the algebraic
definition of a cusp form? They are precisely the ones which extend from 𝑌  to 𝑋, so precisely the
elements of Γ(𝑌 ,Ω1𝑌 ⊗ 𝜔𝑘−2). Note that over 𝑌 , 𝜔2 ≅ Ω1𝑌 , by comparing sections.

We also see these definitions work equally well when 𝑆 = Spec 𝔽𝑝! We take this as our definition of
a mod 𝑝 modular form. Then we have the following theorem:

Theorem 1.1 :  Let 𝑘 ≥ 2, and write 𝑀𝑘(Γ1(𝑁),𝑅) ≔ Γ(𝑌𝑅, 𝜔𝑘) for any ℤ[1/𝑁]-algebra ℝ.
For any 𝑝 ∤ 𝑁 ,

𝑀𝑘(Γ1(𝑁), 𝔽𝑝) ≅ 𝑀𝑘(Γ1(𝑁), ℤ[1/𝑁]) ⊗ 𝔽𝑝. (4)

In other words, every weight ≥ 2 mod 𝑝 modular form lifts to characterstic 0. This is no longer true
when 𝑘 = 1!

1.2 Eichler–Shimura in weight > 2
To formulate a version of the Eichler–Shimura isomorphism, the main difficulty is to sort out the
right hand side: what local system to put on 𝑋 to generalise 𝐻1(𝑋,ℂ) for 𝑘 = 2. Apparently, the
Hodge–de Rham spectral sequence will tell you that 𝑅1𝜋∗ℤ, whose stalk at 𝑥 = (𝐸, 𝑃) is 𝐻1(𝐸, ℤ),
is the right choice.

Theorem 1.2 (The Eichler–Shimura isomorphism for 𝑘 > 2) : There is a Hecke-equivariant
isomorphism

𝐻0(𝑌 ,Ω1𝑌 ⊗ 𝜔𝑘−2) ⊕ 𝐻0(𝑌 ,Ω1𝑌 ⊗ 𝜔𝑘−2) ≅ 𝐻1
𝑝(𝑋, Sym𝑘−2𝑅1𝜋∗ℤ), (5)

where 𝐻1
𝑝 = Im(𝐻1

𝑐 → 𝐻1).

A proof of this can be found in Brian Conrad’s notes here.

The 𝐻1
𝑝  might seem ad-hoc, but¹ it’s not obvious which cohomology theory to use on the

compactified modular curve, and “parabolic cohomology” 𝐻𝑝 turns out to be a special case of the

¹According to Will Sawin here

“correct one”, which is intersection cohomology. It is probably a good exercise to check that this
specialises to Equation 1 when 𝑘 = 2.

The next step is then to compare this with étale cohomology of 𝑋 with coefficients in the étale local
system 𝑅1𝜋∗ℚℓ, and to prove the Eichler–Shimura relations in this setting, which implies that the
characteristic polynomial of 𝜌𝑓(𝜎𝑝) is 𝑇 2 − 𝑎𝑝(𝑓)𝑇 + 𝜀(𝑝)𝑝, for a weight 𝑘 modular form 𝑓 .

2 Weight 1 modular forms
For weight 1 eigenforms, there are several reasons why the above strategy doesn’t work:
1. The local system Sym𝑘−2𝑅1𝜋∗ℤ doesn’t make sense because 𝑘 − 2 < 0, so it’s not clear in what
ℓ-adic cohomology group one should look;
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2. The Hecke eigenvalue system associated to a form 𝑓  can be found in the coherent cohomology
groups 𝐻0(𝑋, 𝜔) as well as 𝐻1(𝑋, 𝜔). In particular, is related to the reason why there are no
simple formula for dim𝑆1(Γ1(𝑁)), unlike for higher weights.

3. A posteriori, the Galois representations attached to weight 1 modular forms are qualitatively
different because their image is finite.

2.1 An example
Let 𝑁 = 145 = 29 ⋅ 5, and set 𝐹 ≔ ℚ(

√
29). The ideal (5) splits in 𝐹 , and we pick a prime 𝔭 above

5. The ray class group of 𝐹  with modulus 𝔭, Cl𝔭, is isomorphic to 𝐶4, and hence we can pick a
quartic character 𝜒 : Cl𝔭 → ℂ×. By identifying Cl𝔭 with the Galois group of the ray class field 𝐻𝔭
over 𝐹 , we then obtain a 2-dimensional Galois representation 𝜌 ≔ Ind𝐺𝐹𝐺ℚ 𝜒 : 𝐺ℚ → GL2(ℂ).

On the other hand, we can define a theta series 𝜃𝜒 by the 𝑞-expansion

𝜃𝜒(𝑧) ≔ ∑
[𝔞]∈Cl𝔭

𝜒(𝔞)∑
𝛼∈𝔞

𝑞Nm(𝑥)/Nm(𝔞) where 𝑞 ≔ 𝑒2𝜋𝑖𝑧. (6)

Using the Poisson summation formula, one can show that this is a modular form of weight 1 and
level 145, and a Hecke eigenform at that. This satisfies 𝐿(𝑠, 𝑓) = 𝐿(𝑠, 𝜌).

This construction – inducing a character of a quadratic field and matching up with a theta series –
gives a large number of weight 1 modular forms and their Galois representations, but not all. We call
these forms dihedral, and any non-dihedral form is said to be “exotic”. The first exotic form in the
lmfdb is 124.1.i.a.

2.2 The Deligne–Serre theorem

Theorem 2.1 (Deligne–Serre [1]) :  Let 𝑁 ≥ 1, 𝜀 : (ℤ/𝑁)× → ℂ× be a Dirichlet character such
that 𝜀(−1) = −1, and fix a normalised eigenform 𝑓 ∈ 𝑆1(Γ0(𝑁), 𝜀). Then there exists an
irreducible representation 𝜌 : 𝐺ℚ → GL2(ℂ) unramified away from 𝑁  such that

det 𝜌(𝜎𝑝) = 𝜀(𝑝) and tr 𝜌(𝜎𝑝) = 𝑎𝑝(𝑓), (7)

for 𝑝 ∤ 𝑁 .

In particular, we have 𝐿(𝑠, 𝑓) = 𝐿(𝑠, 𝜌). This clearly generalises the example in the previous section.
From this we deduce:

Corollary 2.2 (Ramanujan conjecture) :  For any 𝑝, 𝑎𝑝(𝑓) is a sum of two roots of unity; in
particular, |𝑎𝑝(𝑓)| ≤ 2.

This is an example of “Galois information ⇒ Automorphic information”. In the reverse direction, the
Khare–Wintenberger theorem implies that the map 𝑓 ⇝ 𝜌 is surjective onto the set of odd Artin
representations, implying:

Corollary 2.3 (Artin holomorphy conjecture) :  For any odd irreducible Artin representation
𝜌 : 𝐺ℚ → GL2(ℂ), the 𝐿-function 𝐿(𝑠, 𝜌) is everywhere holomorphic.
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2.3 Outline of proof
The proof is completely different from the higher weight counterpart, and rather clever.

1. Let ℓ ∤ 𝑁  be a rational prime. Reduce 𝑓  modulo ℓ.
2. By multiplying 𝑓  with a suitable Eisenstein series, obtain a congruence with a mod ℓ eigenform of

higher weight.
3. This is an eigenform, but its obvious lift to characteristic 0 is not. So we apply the Deligne–Serre

lifting lemma to lift instead the associated Hecke eigenvalue system (as opposed to the
eigenvector) to characteristic 0.

4. This system corresponds to a new eigenform of weight ≥ 2, to which we can attach a 𝜆-adic
representation using Deligne’s generalisation of Eichler–Shimura. Here 𝜆 is some prime above ℓ
in the coefficient field of 𝑓 .

5. This gives one 𝜆-adic representation for each ℓ; the next step is to show that they are all
compatible, which we do by reducing mod 𝜆. Since we know the characteristic polynomial of
𝜌𝜆(𝜎𝑝) for all 𝑝 and these generate 𝐺ℚ, we can prove that their images are uniformly bounded as
we vary ℓ. Using this, we can lift to characteristic 0: the crucial point is that for a finite group 𝐺
with ℓ ∤ |𝐺|, there is a bijection between mod-ℓ representations of 𝐺 and characteristic zero
representations.

6. Finally, to show that the resulting representation is irreducible, one uses an analytic estimate: we
know 𝐿(𝑠, 𝑓 ⊗ 𝑓) has a pole at 𝑠 = 1 by a result of Rankin, and if 𝜌𝑓 = 𝜒1 ⊕ 𝜒2, we obtain a
contradiction by comparing growths.

2.4 Further details
Let 𝐾 be the smallest extension of ℚ containing 𝑎𝑛(𝑓) for all 𝑛 as well as the values of 𝜀, and for
each rational prime ℓ pick a prime 𝜆 of 𝐾 above ℓ. By 𝑘𝜆 we mean the residue field of 𝐾 at 𝜆.

The Eisenstein series mentioned in step 2 is

𝐸𝑘(𝑧) = 1 −
4
𝐵𝑘
∑
∞

𝑛=1
𝜎𝑘−1(𝑛)𝑞𝑛 where 𝜎𝑘−1(𝑛) =∑

𝑑∣𝑛
𝑑𝑘−1. (8)

The Clausen–von Staudt congruences imply that 𝐸ℓ−1 ≡ 1mod ℓ. Thus, as an element in
𝑀𝑝−1(Γ1(𝑁), 𝔽ℓ), 𝐸ℓ−1 has 𝑞-expansion identically equal to 1. Note however that 𝐸ℓ−1 is not the
constant function, which has weight 0. Then the form 𝑓 ⋅ 𝐸ℓ−1mod𝜆 lives in 𝑀ℓ(Γ1(𝑁), 𝑘𝜆) and
has 𝑞-expansion equal to that of 𝑓 mod𝜆. One can check that it is an eigenform using explicit
formulas for weight ℓ Hecke operators, although 𝑓 ⋅ 𝐸ℓ−1 in characteristic zero is not.

The next step is to show that we can lift the Hecke eigenvalues of 𝑓 ⋅ 𝐸ℓ−1 to characteristic zero.

Theorem 2.4 (Deligne–Serre lifting lemma):  Let 𝑘 ≥ 2, and let 𝑔 ∈ 𝑀𝑘(Γ1(𝑁), 𝑘𝜆) be an
eigenform which is the reduction mod 𝜆 of a modular form 𝑔 ∈ 𝑀𝑘(Γ1(𝑁), 𝒪𝐾,(𝜆)). Then
there exists a finite field extension 𝐾′/𝐾 and an eigenform 𝑔′ ∈ 𝑀𝑘(Γ1(𝑁),𝐾′) such that
𝑔′ ≡ 𝑔mod𝜆′ for some prime 𝜆′ above 𝜆.

Let 𝑓 ′ ∈ 𝑀(Γ1(𝑁),𝐾′) denote the lift of 𝑓 ⋅ 𝐸𝑝−1 to characteristic 0, and let 𝜌𝜆′ : 𝐺ℚ → GL2(𝐾′
𝜆′)

be the associated 𝜆′-adic representation. Up to conjugating 𝜌𝜆′ , we can assume the image lands in
GL2(𝒪𝐾′

𝜆′
). Now it makes sense to reduce 𝜌𝜆′  mod 𝜆′, giving 𝜌𝜆′  valued in GL2(𝒪𝐾′/𝜆′). In fact,
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since we know that the characteristic polynomial of 𝜌𝜆′(𝜎𝑝) is 𝑇 2 − 𝑎𝑝(𝑓)𝑇 + 𝜀(𝑝) ∈ 𝑘𝜆[𝑇 ] for any
𝑝 ∤ 𝑁ℓ, the Chebotarov density theorem implies that 𝜌𝜆′  actually takes values in 𝑘𝜆, at least after
replacing with the semisimplification.

So now we have a collection of 𝑘𝜆-valued representations 𝜌𝜆′ , indexed by primes ℓ ≥ 5. We restrict
to ℓ such that 𝜆 is totally split in 𝐾 , which implies that 𝔽𝜆 = 𝔽ℓ. The next step is to show that since
we know the characteristic polynomial of the Frobenii, we can bound the size of
𝐺ℓ ≔ Im(𝜌𝜆′) ⊂ GL2(𝔽ℓ) uniformly as we vary ℓ. This allows us to lift 𝜌𝜆 to characteristic 0 – the
crux of the argument here is that when ℓ ∤ |𝐺|, then reduction mod 𝜆 gives a bijection of
(isomorphism classes of) finite group representations.

So, suppose |𝐺ℓ| ≤ 𝐴, and fix ℓ, ℓ′ > 𝐴. We obtain two characteristic zero lifts 𝜌ℓ and 𝜌ℓ′  with

det(𝑇 − 𝜌ℓ(𝜎𝑝)) = 𝑇 2 − 𝑎𝑝(𝑓)𝑇 + 𝜀(𝑝) = det(𝑇 − 𝜌ℓ′(𝜎𝑝)), (9)

for all 𝑝 ≠ ℓ, and so we conclude that 𝜌ℓ ≅ 𝜌ℓ′  and that this representation is unramified away from
𝑁 . In fact, we should be a bit careful here and argue that we have a representation 𝜌 such that
det(𝑇 − 𝜌(𝜎𝑝)) is congruent to 𝑇 2 − 𝑎𝑝(𝑓)𝑇 + 𝜀(𝑝) modulo infinitely many primes, and so they
have to be equal.

Finally, to show that the representation is irreducible, we argue by contradiction. A result of Rankin
implies that 𝐿(𝑠, 𝑓 ⊗ 𝑓) = ∑∞

𝑛=1|𝑎𝑛|
2 ⋅ 𝑛−𝑠 has a simple pole at 𝑠 = 1, and from this one obtains

∑
𝑝∤𝑁

|𝑎𝑝|2

𝑝𝑠
≤ log(

1
𝑠 − 1

) + 𝑂(1) as 𝑠 ↓ 1. (10)

On the other hand, if 𝜌 ≅ 𝜒1 ⊕ 𝜒2, then 𝑎𝑝 = 𝜒1(𝑝) + 𝜒2(𝑝) and

∑
𝑝∤𝑁

|𝑎𝑝|2

𝑝𝑠
= 2∑

𝑝∤𝑁

1
𝑝𝑠
+∑
𝑝∤𝑁

𝜒1(𝑝)𝜒2(𝑝)
𝑝𝑠

+∑
𝑝∤𝑁

𝜒2(𝑝)𝜒1(𝑝)
𝑝𝑠

= 2 log(
1

𝑠 − 1
) + 𝑂(1),

(11)

as 𝜒1 ≠ 𝜒2 since 𝜒1𝜒2(−1) = −1. This gives a contradiction, and irreducibility follows.
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