WHAT IS A REGULAR ALGEBRAIC AUTOMORPHIC REPRESENTATION?

ZACHARY FENG

1. Introduction

Let F be a number field. Let π be an automorphic representation of $GL_n(\mathbb{A}_F)$.

Definition 1. We say that π is regular algebraic if π_{∞} has the same infinitesimal character as an irreducible algebraic representation W of $(\text{Res}_{F/\mathbb{Q}}\text{GL}_n)_{\mathbb{C}}$.

The purpose of these notes is to demystify this definition. For example, why do we consider representations of $(\text{Res}_{F/\mathbb{Q}}\text{GL}_n)_{\mathbb{C}}$ rather than, say, $(\text{Res}_{F/\mathbb{Q}}\text{GL}_n)_{\mathbb{R}}$? The latter satisfies

$$
(\text{Res}_{F/\mathbb{Q}}\text{GL}_n)(\mathbb{R})=\text{GL}_n(F\otimes_{\mathbb{Q}}\mathbb{R})=\text{GL}_n(\prod_{v|\infty}F_v)=\text{GL}_n(\mathbb{A}_{F,\infty}).
$$

We will go through one example in detail, which should clarify some things.

Let T_n be the standard diagonal torus and B_n be the standard upper triangular Borel subgroup in GL_n . Identify $X^{\bullet}(T_n)$ with \mathbb{Z}^n in the usual way, and write $\mathbb{Z}_{+}^n \subset \mathbb{Z}^n$ for the subset of weights which are B_n -dominant, that is:

$$
\mathbb{Z}_{+}^{n} = \{(a_1,\ldots,a_n) \in \mathbb{Z}^{n} : a_1 \geq \cdots \geq a_n\}.
$$

There is a bijection between irreducible (finite-dimensional) algebraic representations of GL_n (over any characteristic zero field) and \mathbb{Z}_+^n , by sending the representation to its highest weight.

The irreducible representations of $(\text{Res}_{F/\mathbb{Q}} GL_n)_{\mathbb{C}}$ are then easy to determine. Indeed,

$$
(\text{Res}_{F/\mathbb{Q}}\text{GL}_n)(\mathbb{C})=\text{GL}_n(F\otimes_{\mathbb{Q}}\mathbb{C})=\text{GL}_n(\prod_{\text{Hom}(F,\mathbb{C})}\mathbb{C})=\prod_{\text{Hom}(F,\mathbb{C})}\text{GL}_n(\mathbb{C}).
$$

So its irreducible representations are in bijection with the set $(\mathbb{Z}_{+}^{n})^{\text{Hom}(F,\mathbb{C})}$.

2. Example

Let $F = \mathbb{Q}(\sqrt{2})$ d) be an imaginary quadratic field. We will be considering automorphic representations of $\overline{{\rm GL}_1(\mathbb{A}_F)} = \overline{\mathbb{A}}_F^{\times}$ \hat{F}_F , that is, Hecke characters. (The first part of our exposition closely follows that of [\[Sno10\]](#page-3-0), before breaking off to do our own calculations.)

To this end, let $\psi : F^{\times} \backslash \mathbb{A}_F^{\times} \to \mathbb{C}^{\times}$ be a Hecke character. We consider

$$
\psi_{\infty} : (F \otimes_{\mathbb{Q}} \mathbb{R})^{\times} \to \mathbb{C}^{\times}.
$$

Fix roots of the integer d: $u \in F$ and $u' \in \mathbb{C}$; this determines a unique embedding $F \stackrel{\sigma}{\to} \mathbb{C}$ which sends u to u'. In fact, σ induces an isomorphism $F \otimes_{\mathbb{Q}} \mathbb{R} \to \mathbb{C}$ sending $x \otimes y \mapsto \sigma(x)y$. Therefore, ψ_{∞} factors through this isomorphism

$$
\psi_{\infty} : (F \otimes_{\mathbb{Q}} \mathbb{R})^{\times} \to \mathbb{C}^{\times} \to \mathbb{C}^{\times}.
$$

Date: August 14, 2024.

Recall: every continuous homomorphism $\mathbb{C}^{\times} \to \mathbb{C}^{\times}$ has the form

$$
re^{i\theta} \mapsto r^a e^{in\theta}
$$

for some $a \in \mathbb{C}$ and $n \in \mathbb{Z}$ (this is because $\mathbb{C}^{\times} = \mathbb{R}_{>0} \times \mathbb{S}^{1}$ where \mathbb{S}^{1} is the unit circle). Let $z := x + yu'$ with $x, y \in \mathbb{R}$ and $xy \neq 0$ be an arbitrary element of \mathbb{C}^{\times} ; note that this is the image of $1 \otimes x + u \otimes y$ under the isomorphism $F \otimes_{\mathbb{Q}} \mathbb{R} \to \mathbb{C}$. In polar coordinates,

$$
z = (x^2 - dy^2)^{1/2} \frac{x + yu'}{(x^2 - dy^2)^{1/2}}.
$$

Then z is mapped under $\mathbb{C}^{\times} \to \mathbb{C}^{\times}$ to the following element:

$$
(x^{2} - dy^{2})^{a/2} \left(\frac{x + yu'}{(x^{2} - dy^{2})^{1/2}}\right)^{n} = (x^{2} - dy^{2})^{(a-n)/2} (x + yu')^{n}.
$$

This is a rational function of x and y if and only if $a - n$ is an even integer, say 2m. (We want to treat ψ_{∞} as a function of x and y, rather than as a function of z, because $GL_n(\mathbb{A}_{F,\infty}) = (\text{Res}_{F/\mathbb{Q}} GL_n)(\mathbb{R})$ always has the structure of a real algebraic group, and may not have complex structure if the base field F, say, is totally real.) It follows that ψ_{∞} , viewed as a function on \mathbb{C}^{\times} , takes the following form:

$$
z = x + yu' \mapsto (x + yu')^{m+n}(x - yu')^{m} = z^{m+n}\overline{z}^{m}.
$$

So if ψ_{∞} is an algebraic character of $(F \otimes_{\mathbb{Q}} \mathbb{R})^{\times}$, it follows that there exist integers m and n such that after identifying $(F \otimes_{\mathbb{Q}} \mathbb{R})^{\times}$ with \mathbb{C}^{\times} , the character ψ_{∞} looks like:

$$
z\mapsto z^m\overline{z}^n.
$$

Let's do our own calculation now: what is the infinitesimal character of ψ_{∞} ? First, we need to take the derivative $d\psi_{\infty}$ to obtain an action of the real Lie algebra

Lie(
$$
(F \otimes_{\mathbb{Q}} \mathbb{R})^{\times}
$$
) = $F \otimes_{\mathbb{Q}} \mathbb{R} = \mathbb{R}(1 \otimes 1) \oplus \mathbb{R}(u \otimes 1) \xrightarrow{\sim} \mathbb{R} \oplus \mathbb{R}u' = \mathbb{C}$.

Let's compute $d\psi_{\infty}$ on the basis $\{1, u'\}$. Fo any $\gamma \in \mathbb{C}$:

$$
d\psi_{\infty}(1)(\gamma) = \frac{d}{dt}\bigg|_{t=0} e^t \cdot \gamma = \frac{d}{dt}\bigg|_{t=0} e^{t(m+n)}\gamma = (m+n)\gamma
$$

$$
d\psi_{\infty}(u')(\gamma) = \frac{d}{dt}\bigg|_{t=0} e^{tu'} \cdot \gamma = \frac{d}{dt}\bigg|_{t=0} e^{tu'(m-n)}\gamma = u'(m-n)\gamma
$$

So the R-linear homomorphism $d\psi_{\infty} : \mathbb{C} \to \mathbb{C}$ satisfies

$$
d\psi_{\infty}(1) = m + n
$$

$$
d\psi_{\infty}(u') = u'(m - n)
$$

Note that at this stage, m and n are still somewhat entangled. Let us recall for a moment what we are after. If $\mathfrak{g} := \text{Lie}((F \otimes_{\mathbb{Q}} \mathbb{R})^{\times})$, then we want to compute the infinitesimal central character of ψ_{∞} , which is a character of $Z(U(\mathfrak{g}_{\mathbb{C}}))$: the centre of the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$. In particular, we need to compute $\mathfrak{g}_{\mathbb{C}} := \mathbb{C} \otimes_{\mathbb{R}} \mathfrak{g}$; this is where the magic happens, and things will become untangled.

Recall there is a canonical C-linear isomorphism

$$
\begin{aligned} \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} &\rightarrow \mathbb{C} \times \mathbb{C} \\ z \otimes w &\mapsto (zw, z\overline{w}) \end{aligned}
$$

where $\mathbb C$ acts on $\mathbb C \otimes_{\mathbb R} \mathbb C$ in the first factor, and on $\mathbb C \times \mathbb C$ diagonally. This is a special case of the following more general phenomenon; for details, please read [\[Gai\]](#page-3-1).

Proposition 2. Let L/K be a finite Galois extension, with Galois group G, and let A be an L-algebra. For each $\sigma \in G$, let $*_\sigma$ denote the twisted scalar action of L on A by $z*_\sigma a = \sigma(z)a$. Let A_{σ} denote the resulting L-algebra. Then there is an L-algebra isomorphism

$$
L \otimes_K A \to \prod_{\sigma \in G} A_{\sigma}
$$

$$
z \otimes a \mapsto (z *_{\sigma} a)_{\sigma \in G}.
$$

In our case, choose $A = L = \mathbb{C}$ and $K = \mathbb{R}$, and let $c \in \text{Gal}(\mathbb{C}/\mathbb{R})$ denote the unique non-trivial element. Then there is a C-algebra isomorphism

$$
\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C} \times \mathbb{C}_c
$$

$$
z \otimes w \mapsto (zw, \overline{z}w).
$$

However, (coincidentally) there is a canonical C-algebra isomorphism

$$
\mathbb{C} \to \mathbb{C}_c
$$

$$
w \mapsto \overline{w}.
$$

The composition of $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C} \times \mathbb{C}_c$ and $\mathbb{C} \times \mathbb{C}_c \to \mathbb{C} \times \mathbb{C}$ gives us the desired \mathbb{C} -algebra isomorphism alluded to in the beginning. Identifying $\mathbb{C} \otimes_{\mathbb{R}} \mathfrak{g}$ with $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$, we see that a natural basis for $\mathbb{C} \otimes_{\mathbb{R}} \mathfrak{g}$ gets mapped under the isomorphism to the following elements:

$$
1 \otimes 1 \mapsto (1, 1)
$$

\n
$$
1 \otimes u' \mapsto (1, -u')
$$

\n
$$
i \otimes 1 \mapsto (i, i)
$$

\n
$$
i \otimes u' \mapsto (iu', -iu')
$$

The next step is to observe that we can automatically upgrade the R-linear homomorphism $d\psi_{\infty} : \mathfrak{g} \to \mathbb{C}$ to a \mathbb{C} -linear homomorphism $(d\psi_{\infty})_{\mathbb{C}} : \mathfrak{g}_{\mathbb{C}} \to \mathbb{C}$. Let's calculate this action on the C-linear basis $(1,0)$ and $(0,1)$ of $\mathfrak{g}_{\mathbb{C}}$. Indeed (pardon my abuse of notation),

$$
(1,0) = \frac{1}{2}((1 \otimes 1) - \frac{iu'}{d}(i \otimes u'))
$$

$$
(0,1) = \frac{1}{2}((1 \otimes 1) + \frac{iu'}{d}(i \otimes u')).
$$

The C-linearity of $(d\psi_{\infty})_{\mathbb{C}}$ then tells us that:

$$
(d\psi_{\infty})_{\mathbb{C}}(1,0) = \frac{1}{2}((d\psi_{\infty})_{\mathbb{C}}(1 \otimes 1) + \frac{u'}{d}(d\psi_{\infty})_{\mathbb{C}}(1 \otimes u')) = \frac{1}{2}((m+n) + \frac{u'}{d}u'(m-n)) = m
$$

$$
(d\psi_{\infty})_{\mathbb{C}}(0,1) = \frac{1}{2}((d\psi_{\infty})_{\mathbb{C}}(1 \otimes 1) - \frac{u'}{d}(d\psi_{\infty})_{\mathbb{C}}(1 \otimes u')) = \frac{1}{2}((m+n) - \frac{u'}{d}u'(m-n)) = n.
$$

So the m and n have been unentangled!

Since $\mathfrak{g}_{\mathbb{C}}$ is abelian, the universal enveloping algebra $U(\mathfrak{g}_{\mathbb{C}})$ of $\mathfrak{g}_{\mathbb{C}}$ is isomorphic to the polynomial algebra $\mathbb{C}[X, Y]$ where $X = (1, 0)$ and $Y = (0, 1)$. Its centre is equal to itself. So the infinitesimal central character of ψ_{∞} is the character

$$
\begin{aligned} \mathbb{C}[X,Y] &\to \mathbb{C} \\ X &\mapsto m \\ Y &\mapsto n. \end{aligned}
$$

Finally, let's see which algebraic character of $(Res_{F/\mathbb{Q}} GL_1)_{\mathbb{C}}$ this comes from. Indeed, using the isomorphism $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C} \times \mathbb{C}$ from before, we have:

$$
(\operatorname{Res}_{F/\mathbb{Q}}\mathrm{GL}_1)(\mathbb{C})=(F\otimes_{\mathbb{Q}}\mathbb{C})^\times=((F\otimes_{\mathbb{Q}}\mathbb{R})\otimes_{\mathbb{R}}\mathbb{C})^\times=(\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C})^\times=\mathbb{C}^\times\times\mathbb{C}^\times.
$$

All the algebraic characters of \mathbb{C}^{\times} , considered as the C-points of $(\mathbb{G}_{m})_{\mathbb{C}}$ rather than as the R-points of $(\text{Res}_{F/\mathbb{Q}} GL_1)_{\mathbb{R}}$, are given by $z \mapsto z^n$ for some integer n.

With a simple calculation, we easily see that

$$
\phi : (\text{Res}_{F/\mathbb{Q}} \text{GL}_1)(\mathbb{C}) = \mathbb{C}^\times \times \mathbb{C}^\times \to \mathbb{C}^\times
$$

$$
(z, w) \mapsto z^m w^n
$$

has the same infinitesimal character as ψ_{∞} ; in fact, $d\phi \cong (d\psi_{\infty})_{{\mathbb C}}$. Going back to what we said in the introduction, we see that ϕ is associated to the tuple

$$
(m,n) \in \mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^{\mathrm{Hom}(F,\mathbb{C})} = (\mathbb{Z}^1_+)^{\mathrm{Hom}(F,\mathbb{C})}.
$$

REFERENCES

- [Gai] Pierre-Yves Gaillard. Tensor product algebra $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$. Mathematics Stack Exchange. URL: [https:](https://math.stackexchange.com/q/2265459) [//math.stackexchange.com/q/2265459](https://math.stackexchange.com/q/2265459) (version: 2017-05-05).
- [Sno10] Andrew Snowden. Lecture 11: Hecke characters and Galois characters, 2010. URL: [http://math.](http://math.stanford.edu/~conrad/modseminar/pdf/L11.pdf) [stanford.edu/~conrad/modseminar/pdf/L11.pdf](http://math.stanford.edu/~conrad/modseminar/pdf/L11.pdf). Last edited on 2010/01/28. Last visited on 2024/08/10.