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1. Fourier Analysis

Definition 1. If G is an abelian locally compact Hausdorff topological group (LCHTG) then

the character group Ĝ = Hom(G,S1) is called the Pontryagin dual of G.

Remark 2. The term character will refer to continuous maps into the unit circle S1 ⊂ C×.
For arbitrary continuous maps into C×, we shall refer to them as quasi-characters.

Proposition 3. Let G be an abelian LCHTG, then the canonical map G → ˆ̂
G is an isomor-

phism of topological groups.
[Buz08, p.46]

Definition 4. If f ∈ L1(G), i.e. f : G → C is integrable, we define its Fourier transform

to be the function f̂ : Ĝ → C given by the formula

f̂(λ) :=

∫
G

f(g)λ(g) dg.

Theorem 5. Fix Haar measures on G and Ĝ. Then there exists a real number c > 0 such

that if f ∈ L1(G) is continuous, and f̂ ∈ L1(Ĝ), and if we identify G ∼= ˆ̂
G, then

ˆ̂
f(g) = cf(g−1)

for all g ∈ G. Moreover, for any choice of Haar measure on G, there exists a unique Haar
measure on Ĝ such that c = 1.
[Buz08, p.47]

2. Quasi-Characters of K+ and K×

Let K be the completion of a number field at a finite or infinite place v. Let K+ ∋ ξ
denote the additive group, and K× ∋ α denote the multiplicative group.

Lemma 6. Let ξ 7→ λ(ξ) be a non-trivial character of K+. Then for each η ∈ K+, ξ 7→ λ(ηξ)
is also a character. The correspondence η 7→ (ξ 7→ λ(ηξ)) is an isomorphism of topological

groups, identifying K+ ∼= K̂+.
[CF77, Lemma 2.2.1]

Let U ⊂ K× be the subgroup of α such that |α| = 1. It is always compact. If K is
non-archimedean, then it is also open.

Definition 7. A quasi-character c : K× → C× is unramified if c(U) = 1.

Lemma 8. The unramified quasi-characters of K× are all of the form c(α) = |α|s := es log|α|

for some s ∈ C. If K is archimedean, then s is determined by c. If K is non-archimedean,
then s is only determined modulo 2πi

log q
Z where q is the size of the residue field of K.

[CF77, Lemma 2.3.1], [Buz08, p.51]
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Theorem 9. The quasi-characters of K× are all of the form c(α) = c̃(α̃)|α|s where c̃ is a
character of U uniquely determined by c, and s is determined by the previous lemma.
[CF77, Theorem 2.3.1], [Buz08, p.52]

Proof. We can split the short exact sequence

0 U K× |K×| 0.

s

For K archimedean, define s so that im s = R>0. For K non-archimedean, define s so that
im s = πZ where π ∈ K× is a fixed uniformizer. Write K× = U × V where V = imS. For
α ∈ K×, let α̃ denote its projection onto U . Since U is compact, c̃ := c|U has image in S1.
Finally, c/c̃ is an unramified quasi-character of K×, which we have already classified. □

We now equip Hom(K×,C×) with the structure of a 1-dimensional complex manifold.

Hom(K×,C×) = Hom(U,C×)× Hom(V,C×)

= Hom(U,S1)× Hom(V,C×)

= Û × Hom(V,C×)

The Pontryagin dual of a compact space is discrete, so Û is discrete. We have already
seen that the space Hom(V,C×) of unramified quasi-characters is parameterized by a single
complex number s. If K is archimedean, then this space is isomorphic to C. Otherwise, it
is isomorphic to the cyclinder C/ 2πi

log q
Z for some integer q as defined above.

Therefore, Hom(K×,C×) can be given the structure of a disjoint union of 1-dimensional
complex manifolds. The connected components correspond to fixing a character of U .

Definition 10. Two quasi-characters of K× are said to be equivalent if their quotient is an
unramified quasi-character. We remark that two quasi-characters are equivalent if and only
if they lie on the same connected component of Hom(K×,C×).

Example 11. Let c : K× → C× be a quasi-character.

(1) K = R, U = {±1}, V = R>0.

c(α) = sgn(α)ε|α|s, ε ∈ {0, 1}, s ∈ C.
(2) K = C, U = S1, V = R>0.

Ŝ1 = Z = {n : z 7→ zn}

c(α) = α̃n|α|s, n ∈ Z, s ∈ C.
(3) K = Qp, U = Z×

p , V = pZ.

Hom(Z×
p ,C×) = lim−→

n

Hom((Z/pnZ)×,C×)

c(α) = (Dirichlet character)|α|s, s ∈ C/ 2πi
log p

Z.

Definition 12. Let c : K× → C× with c = c̃|−|s. We call σ := Re(s) the exponent of c.
We denote the exponent of c by exp(c).

Remark 13. We shall soon see that quasi-characters c with exp(c) > σ will correspond to
complex numbers s with Re s > 0 when speaking about the domain of zeta functions.
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3. Local Zeta Functions and the Functional Equation

Let q be the size of the residue field of K. Fix a Haar measure dξ on K+. Then we define
the Haar measure on K× by the formulas

d×α :=
dα

|α|
(K archimedean)

d×α :=
q

q − 1

dα

|α|
(K non-archimedean)

We’ve already identified K+ ∼= K̂+, which allows us to further identify L1(K+) ∼= L1(K̂+).
Let f(ξ) denote a complex-valued function on K+, and f(α) denote its restriction to K×.

Definition 14. Let Z = Z(K) denote the space of functions f : K → C such that

(1) f, f̂ : K → C are both continuous, and in L1(K+),

(2) x 7→ f(x)|x|σ and x 7→ f̂(x)|x|σ are both in L1(K×) for all σ > 0.

[CF77, p.313]

Definition 15. Let S = S(K) denote the space of functions f : K → C such that

(1) for K archimedean: f is a smooth function such that

p(x)f(x) → 0

as x → ∞ for all polynomials p.
(2) for K non-archimedean: f is a smooth function with compact support.

[RV99, p.245]

I am pretty sure that S ⊂ Z and this inclusion is dense in the right topologies. But I
cannot be bothered to right down a proof. We will start by developing the theory of zeta
functions using the larger space of functions Z. This is the “largest” space of functions on
which the theory can be made to work, and is what Tate originally considered in his thesis.
Later on, we will restrict our attention to S, and this will allow us to make the connection
between zeta functions and the local L-functions that one typically writes down.

Definition 16. For each f ∈ Z, we introduce a function ζ(f, c) of quasi-characters c, defined
for all quasi-characters of exponent σ > 0, by the formula

ζ(f, c) :=

∫
K×

f(α)c(α) d×α.

This is called a ζ-function of K.

Lemma 17. The function ζ(f, c) converges, and is holomorphic in the domain exp(c) > 0.
[CF77, Lemma 2.4.1], [Buz08, p.54]

Proof. Convergence is immediate: since f ∈ Z we have |f(x)c(x)| = |f(x)||x|exp(c) ∈ L1(K×).
The complex structure near c is given by c|−|s for small s. We just need to check that
ζ(f, c|−|s) is holomorphic in s for small s. Write

ζ(f, c|−|s) =
∫
K×

f(α)c(α)|α|s d×α.
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By our assumptions, differentiating with respect to s commutes with the integral, and so

d

ds

∫
K×

f(α)c(α)|α|s d×α =

∫
K×

f(α)c(α)
∂

∂s
|α|s d×α =

∫
K×

f(α)c(α)|α|s log|α| d×α.

We are just left to show that the final integral converges. Fix a small s.

(1) As |α| → ∞, we have |c(α)|α|s log|α|| ≤ |α|exp(c)+Re(s)+ε for any ε > 0. So the integral
converges on the open vertical strip |Re(s)| < ε+ exp(c) for any ε > 0.

(2) For |α| → 0, let β = 1/α and instead require |β| → ∞.

|c(α)|α|s log|α|| = |α|exp(c)+Re(s)|log|α||

= |β|− exp(c)−Re(s)|log|β||

≤ |β|− exp(c)−Re(s)+ε (for all ε > 0)

= |α|exp(c)+Re(s)−ε

Choosing some 0 < ε < exp(c), we see that the integral converges on the small open
vertical strip |Re(s)| < exp(c)− ε. Note the radius of convergence depends on c. □

Lemma 18. For 0 < exp(c) < 1, define ĉ(α) := c(α)−1|α|. For any f, g ∈ Z, we have

ζ(f, c)ζ(ĝ, ĉ) = ζ(f̂ , ĉ)ζ(g, c).

[CF77, Lemma 2.4.2]

Proof. We expand out the left hand side:

ζ(f, c)ζ(ĝ, ĉ) =

∫
K×

f(α)c(α) d×α

∫
K×

ĝ(α)c(α)−1|α| d×α

=

∫
K×

∫
K×

f(α)ĝ(β)c(αβ−1)|β| d×αd×β

=

∫
K×

∫
K×

f(α)ĝ(αβ)c(β−1)|αβ| d×αd×β ((α, β) 7→ (α, αβ))

=

∫
K×

(∫
K×

f(α)ĝ(αβ)|α| d×α
)
c(β)−1|β| d×β. (Fubini)

We will be done if we can show that the inner integral is stable under swapping f and g. To
do this, we begin with an integral which is obviously symmetric under switching f and g:∫

K+

∫
K+

f(ξ)g(η)λ(ηβξ) dξdη

where λ ∈ K̂+ is a fixed non-trivial character inducing an isomorphism K+ → K̂+.∫
K+

∫
K+

f(ξ)g(η)λ(ηβξ) dξdη =

∫
K+

f(ξ)

(∫
K+

g(η)λ(ηβξ) dη

)
dξ

=

∫
K+

f(ξ)ĝ(βξ) dξ

= (constant)

∫
K×

f(α)ĝ(βα)|α| d×α. □
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Theorem 19. A ζ-function has an meromorphic continuation to the complex manifold of
all quasi-characters given by a functional equation of the type

ζ(f, c) = ρ(c)ζ(f̂ , ĉ).

The factor ρ(c) is independent of f , and is a meromorphic function on all quasi-characters.
[CF77, Theorem 2.4.1]

Proof. It suffices to exhibit for each equivalence class C of quasi-characters some explicit
function fC ∈ Z such that ρ(c) := ζ(f, c)/ζ(f̂C , ĉ) is defined (i.e. the denominator is not
identically zero) for c in the strip 0 < exp(c) < 1 on C. The function ρ(c) defined in
this manner will turn out to be a familiar meromorphic function of the parameter s having
meromorphic continuation to all of C. We omit the details in these notes. □

4. L-Functions

We switch gears now and restrict our attention to the space S. Fix a non-trivial character
λ ∈ K̂+ inducing an isomorphism K+ → K̂+. Fix the unique measure on K+ such that
ˆ̂
f(ξ) = f(−ξ). Note that this depends on λ, since the definition of f̂ as a function on K+

depends on λ. This is called the self-dual Haar measure on K+, relative to λ.
Let K be non-archimedean, and O its valuation ring. Recall that S = S(K) in this case is

just the space of compactly supported smooth functions on K, which we will denote C∞
c (K).

Choose a uniformizer ϖ ∈ K. Let c : K× → C× be a quasi-character. Let U ⊂ K× be the
subset {α ∈ K× : |α| = 1}. For m ∈ Z, let Im denote the characteristic function of ϖmU .
Note that the topology on K× ⊂ K is just the subspace topology.

For f ∈ C∞
c (K), the function fm = Imf lies in C∞

c (K×) ⊂ C∞
c (K). Note that fm is

identically zero for m ≪ 0, since compact sets are bounded. We may therefore set

zm = zm(f, c) =

∫
ϖmU

f(α)c(α) d×α, m ∈ Z,

and define a formal Laurent series ζ(f, c,X) ∈ C((X)) by the formula

ζ(f, c,X) =
∑
m∈Z

zmX
m.

Remark 20. Plugging in X = q−s recovers the original ζ-function definition as a function
of s on the component of C, possibly shifted along the x-axis.

ζ(f, c, q−s) =
∑
m∈Z

(∫
ϖmU

f(α)c(α) d×α

)
q−sm

=
∑
m∈Z

∫
ϖmU

f(α)c(α)|α|s d×α

=

∫
K×

f(α)c(α)|α|s d×α.

The map C∞
c (K) → C((X)) sending f 7→ ζ(f, c,X) is C-linear. We denote its image

Z(c) = {ζ(f, c,X) : f ∈ C∞
c (K)}.

For a ∈ K× and f ∈ C∞
c (K), denote by af the function x 7→ f(a−1x). Then

ζ(af, c,X) = c(a)Xv(a)ζ(f, c,X).
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This gives Z(c) the structure of a C[X,X−1]-module. The ring C[X,X−1] is principal ideal
domain, and its unit group consists of the monomials aXb, a ∈ C×, b ∈ Z.
Proposition 21. Let c be a quasi-character of K×. Then

Z(c) = Pc(X)−1C[X,X−1]

where

Pc(X) =

{
1− c(ϖ)X if c is unramified,

1 otherwise.

[BH06, p.140]

Proof. Recall the inclusion C∞
c (K×) ⊂ C∞

c (K). Note that the restriction f |K× of a function
f ∈ C∞

c (K) lies in C∞
c (K×) if and only if f(0) = 0. In this case, ζ(f, c,X) has only finitely

many non-zero coefficients. This is because if f vanishes at 0, it does so locally. So

{ζ(f, c,X) : f ∈ C∞
c (K×)} ⊂ C[X,X−1].

In fact, this is a C[X,X−1]-submodule, i.e. an ideal. Let f be the characteristic function of
a small enough neighbourhood of 1, then ζ(f, c,X) is a positive constant. So

{ζ(f, c,X) : f ∈ C∞
c (K×)} = C[X,X−1].

Let f0 be the characteristic function of O. Then

ζ(f0, c,X) =
∑
m≥0

(∫
ϖmU

c(α) d×α

)
Xm

=
∑
m≥0

c(ϖm)Xm

∫
U

c(α) d×α.

The inner integral is vol×(U) if c is unramified, and is zero otherwise. So

vol×(U)−1ζ(f0, c,X) =

{
(1− c(ϖ)X)−1 if c is unramified,

0 otherwise.

Since C∞
c (K) is the C-span of f0 and C∞

c (K×), and since Z(c) is a C[X,X−1]-module,

Z(c) = CPc(X)−1 + C[X,X−1] = C[X,X−1]Pc(X)−1. □

Let c̆ = c−1 denote the contragredient representation, i.e. smooth dual, of c. There is an
analogous functional equation in this setup.

Theorem 22. Let c be a quasi-character of K×. There exists a unique rational function
ρ(c,X) ∈ C(X) such that

ζ(f̂ , c̆, 1
qX

) = ρ(c,X)ζ(f, c,X)

for all f ∈ C∞
c (K). The factor ρ(c,X) depends on the choice of 0 ̸= λ ∈ K̂+ inducing

K+ ∼= K̂+, but we have suppressed this dependence, since λ was fixed at the beginning.
[BH06, p.140]

We describe how this relates to a more traditional notation. For a complex variable s:

ζ(f, c, s) := ζ(f, c, q−s)

L(c, s) := Pc(q
−s)−1

ρ(c, s) := ρ(c, q−s)
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Define a rational function

ε(c, s) := ρ(c, s)
L(c, s)

L(c̆, 1− s)
.

Proposition 23. The function ε(c, s) satisfies the functional equation

ε(c, s)ε(c̆, 1− s) = c(−1).

For some n(c) ∈ Z, one has that

ε(c, s) = q(
1
2
−s)n(c)ε(c, 1

2
).

[BH06, p.142]

Proof. By the functional equation

ζ(f̂ , c̆, 1− s) = ρ(c, s)ζ(f, c, s).

Applying this twice, we get

ζ(
ˆ̂
f, c, s) = ρ(c̆, 1− s)ρ(c, s)ζ(f, c, s).

The Fourier inversion formula tells us that

ζ(
ˆ̂
f, c, s) = c(−1)ζ(f, c, s).

We conclude that

ε(c̆, 1− s)ε(c, s) = ρ(c̆, 1− s)ρ(c) = c(−1).

We can rewrite the functional equation in the form

ζ(f̂ , c̆, 1− s)

L(c̆, 1− s)
= ε(c, s)

ζ(f, c, s)

L(c, s)
.

The fractions on either side lie in C[qs, q−s]. We may choose f so that ζ(f, c, s) = L(c, s) and
deduce that ε(c, s) ∈ C[qs, q−s]. The functional equation implies that ε(c, s) is an invertible
element of C[qs, q−s] and hence equal to aqms for some a ∈ C× and m ∈ Z. □

Example 24. Let c0 : K× → C× be the unramified quasi-character α 7→ |α|−1. This

corresponds to the local cyclotomic character WK → Q×
l

∼= C× under the local Langlands
correspondence. We compute its L-function. Let f0 be the characteristic function of O.

(1) First, we use Tate’s original definition.

ζ(f0, c0|−|s) =
∫
K×

f0(α)c0(α)|α|s d×α

=
∑
m≥0

∫
ϖmU

|α|s−1 d×α

=
∑
m≥0

q(1−s)m

∫
U

|α|s−1 d×α

=
1

1− qq−s
.
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(2) Next, we use the Laurent series definition.

ζ(f0, c0, s) =

∫
K×

f0(α)c0(α)|α|s d×α

=

∫
K×

f0(α)|α|s−1 d×α

=
1

1− qq−s
.

They give the same L-function, as we expected.
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