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1. Supercuspidal Representations

Let G be a locally profinite group. Let (π, V ) be a smooth representation of G.

Definition 1. The smooth dual of V is a representation (π∨, V ∨) of G where

V ∨ :=
⋃
K⊂G

open compact

(V ∗)K ⊆ V ∗ := HomC(V,C).

Proposition 2. If V is smooth and admissible, then

(i) V ∨ is smooth and admissible,
(ii) the canonical map V → (V ∨)∨ is an isomorphism,
(iii) if V is irreducible, then so is V ∨.

For v ∈ V and λ ∈ V ∨, we can form their matrix coefficient

mv,λ : G→ C
g 7→ λ(gv).

Definition 3. A smooth admissible representation (π, V ) of G is called supercuspidal if
all of its matrix coefficients are compactly supported modulo the centre, i.e. there exists a
compact subset Ω ⊂ G such that supp(mv,λ) ⊂ ZΩ.

Proposition 4. If (π, V ) is irreducible, then it suffices to check that a single matrix coeffi-
cient has compact support modulo the centre.

Proof. Since V ∨ is also irreducible, any v′ ∈ V , resp. λ′ ∈ V ∨, is a linear combination of
elements of the form gv, resp. hλ, for g, h ∈ G. Then mv′,λ′ is a linear combination of matrix
coefficients of the form

mgv,hλ : x 7→ λ(h−1xgv)

which has compact support modulo the centre. □

Let G be a connected reductive algebraic group over a non-archimedean local field F .
Consider its F -points G = G(F ).

Proposition 5. Let H be an open subgroup of G containing the centre, and compact modulo
the centre. Let (σ,W ) be an irreducible finite dimensional representation of H. If

cIndG
H W :=

{
f : G→ W

∣∣∣∣∣ f has compact support modulo the centre

and f(hg) = σ(h)f(g) for all h ∈ H, g ∈ G

}
is irreducible and admissible, then it is supercuspidal.
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Proof. By irreducibility, it suffices to construct a single matrix coefficient that is compact
modulo the centre. By finite-dimensionality of W , choose 0 ̸= w ∈ W and 0 ̸= λ ∈ W ∗ such
that λ(w) ̸= 0. Define fw ∈ cIndG

H W and fλ ∈ cIndG
H(W

∗) by the formulas

fw(g) =

{
σ(g)w if g ∈ H,

0 otherwise,
fλ(g) =

{
σ∗(g)λ if g ∈ H,

0 otherwise.

We can view fλ as an element of (cIndG
H W )∨ as follows: for f ∈ cIndG

H W , set

⟨fλ, f⟩ = ⟨fλ(1), f(1)⟩ ∈ C
where the second pairing is the canonical one between W ∗ and W . This identifies fλ with
the element ⟨fλ,−⟩ ∈ (cIndG

H W )∨. We now form the matrix coefficient

mfw,fλ(g) := ⟨fλ, gfw⟩ = ⟨fλ(1), (gfw)(1)⟩ = ⟨λ, fw(g)⟩ .
It is non-zero, since mfw,fλ(1) = ⟨λ,w⟩ ̸= 0. It is compactly supported modulo the centre
because supp(mfw,fλ) ⊂ supp fw ⊂ H. □

Conjecture 6. All supercuspidals arise in this way.

Let P = MN be the Levi decomposition of a proper parabolic subgroup P of G. Let
(π, V ) be a smooth admissible representation of G. Set

V (N) := span{π(n)v − v : n ∈ N},
VN := V/V (N).

Then M acts on VN by π|M .

Definition 7. The module JP (V ) = VN with M-action given by

πN := π|M ⊗ δ
−1/2
P

is called the Jacquet module of (π, V ) with respect to P . This is an (exact) functor

JP : {smooth G-representations} → {smooth M -representations}.

Proposition 8. JP is left adjoint to nIndG
P , i.e. there is an isomorphism

HomG(V, nInd
G
P W ) → HomM(JP (V ),W )

for all G-representations V and M-representations W .

Theorem 9 (Jacquet). (i) JP (V ) is admissible if V is admissible.
(ii) A smooth irreducible admissible representation (π, V ) is supercuspidal if and only if

JP (V ) = 0 for all proper parabolic subgroups P ⊊ G.

Theorem 10. If (π, V ) is a smooth irreducible admissible representation of G, then there
exists a parabolic subgroup P ⊂ G with Levi decomposition P = MN and a supercuspidal
representation (σ,W ) of M such that (π, V ) is isomorphic to a subrepresentation of

nIndG
P W.

Proof. Since V is irreducible, it suffices to show there exists a non-zero G-equivariant map

V → nIndG
P W

for some (σ,W ) as in the statement of the theorem. We induct on dimG: the dimension
of G as an algebraic group. If dimG = 1, then it is a torus and equals its centre, so any
function on G is compactly supported modulo the centre.
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Assume dimG > 1. First, assume there are no G-equivariant maps

V → nIndG
P W

for any proper parabolic P = MN and smooth admissible representation (σ,W ) of M .
Then by the adjunction of JP and nIndG

P and the fact that JP (V ) is admissible, we have that
JP (V ) = 0 for all proper parabolic subgroups P . In this case, V is supercuspidal.
Now assume there is a proper parabolic P = MN , a smooth admissible (not necessarily

supercuspidal) representation (σ,W ) of M , and a non-zero G-equivariant map

V → nIndG
P W.

By adjunction, there is a non-zero M -equivariant map

JP (V ) → W.

Since P is proper, we have dimM < dimG, and so our induction hypothesis implies there
exists a parabolic subgroup Q of M with Levi subgroup L, a supercuspidal representation
(ρ, U) of L, and a non-zero M -equivariant map

W → nIndM
Q U.

Composing with the map JP (V ) → W , and applying adjunction again, we get

V → nIndG
P (nInd

M
Q U).

It can be shown that QN is a parabolic subgroup of G with Levi subgroup L. Finally, we
apply the transitivity of induction to obtain

nIndG
P (nInd

M
Q U) = nIndG

QN U. □

The two pictures that we are trying to paint are (1) ”supercuspidal representations are
precisely the ones that do not come from parabolic induction”, i.e. they are new for G, and
(2) ”supercuspidal representations generate all irreducible admissible representations”. The
following definition/theorem elaborates on this idea for G = GLn(F ).

Theorem 11 ([GH11] 14.5.6). Let (π, V ) be an irreducible smooth representation of GLn(F ).
Then there exists a unique unordered partition κ = (κ1, . . . , κr) of n and an unordered tuple
(π1, . . . , πr) of supercuspidal representations, unique up to isomorphism, satisfying

(i) πi is a supercuspidal representation of GLκi
(F ) for all 1 ≤ i ≤ r,

(ii) π is isomorphic to a subquotient of nIndG
P (π1⊗· · ·⊗πr) where P is the standard parabolic

subgroup of G associated to the partition κ.

The unordered tuple (π1, . . . , πr) is called the supercuspidal support of π.

For the rest of these notes, let G = GLn(F ).

Definition 12 (Segments). (i) For any representation π of GLn(F ), and any integer s,
we write π(s) := π ⊗ |det|s.

(ii) A segment is a set of isomorphism classes of irreducible supercuspidal representations
of GLn(F ) of the form ∆ = {π, π(1), . . . , π(r − 1)} for some r ≥ 1, and we write
∆ = [π, π(r − 1)].

(iii) We say that two segments ∆1,∆2 are linked if neither contains the other, and ∆1 ∪∆2

is also a segment.
(iv) If ∆1 = [π, π′] and ∆2 = [π′′, π′′′] are two segments, we say that ∆1 precedes ∆2 if they

are linked and π′′ = π(r) for some r ≥ 0.
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Theorem 13 ([CEG+16] Bernstein-Zelevinsky). Let P =MN be the Levi decomposition of
the parabolic subgroup of G associated to the partition n = n1 + · · ·+ nk.

(i) Consider σ = σ1 ⊗ · · · ⊗ σk where each σi is an irreducible supercuspidal representation
of GLni

(F ). The induction nIndG
P σ is reducible if and only if there exists i ̸= j such

that ni = nj and σi = σj(1).
(ii) Suppose m = n1 = · · · = nk so that n = km. The induction nIndG

P ∆ of a segment
∆ = [π, π(k − 1)] has a unique irreducible quotient, denoted Q(∆).

(iii) Consider segments {∆i}ki=1 where each Q(∆i) is a representation of GLni
(F ) and so that

∆i does not precede ∆j whenever i < j. Then the induced representation nIndG
P (Q(∆1)⊗

· · · ⊗Q(∆k)) has a unique irreducible quotient, called the Langlands quotient, denoted
either Q(∆1, . . . ,∆k) or Q(∆1) ⊞ · · · ⊞ Q(∆k). Any irreducible representation π of G
is obtained uniquely in this way, up to a permutation of the ∆i.

Example 14. Let G = GL2(F ). Let P = MN be the Levi decomposition of the upper
triangular Borel subgroup of G. We describe the Langlands quotient for each of the four
families arising in the usual classification of irreducible admissible representation of GL2(F ).
This classification can be found in [Bum97].

(i) Let χ1, χ2 be characters of F× so that χ1χ
−1
2 ̸= |−|±1. Recall that in this case we have

nIndP (χ1 ⊗ χ2) is irreducible. Let ∆1 = {χ1} and ∆2 = {χ2}. We can write

nIndP (χ1 ⊗ χ2) = nIndG
P (Q(∆1)⊗Q(∆2)) = Q(∆1)⊞Q(∆2).

We remark that Q(∆1)⊞Q(∆2) ∼= Q(∆2)⊞Q(∆1).
(ii) Let χ1, χ2 be characters of F× so that χ1χ

−1
2 = |−|. Then there exists a character χ

such that χ1 = χ|−|1/2 and χ2 = χ|−|−1/2. There is a short exact sequence

0 χ⊠ StG nIndG
P (χ|−|1/2 ⊗ χ|−|−1/2) χ ◦ det 0.

Let ∆1 = {χ|−|1/2} and ∆2 = {χ|−|−1/2}. Then
χ ◦ det = Q(∆1)⊞Q(∆2).

We note that this is permitted, since ∆1 does not precede ∆2.
(iii) Let χ1, χ2 be characters of F× so that χ1χ

−1
2 = |−|−1. Then there exists a character χ

such that χ1 = χ|−|−1/2 and χ2 = χ|−|1/2. There is a short exact sequence

0 χ ◦ det nIndG
P (χ|−|−1/2 ⊗ χ|−|1/2) χ⊠ StG 0 .

Let ∆ = {χ|−|−1/2, χ|−|1/2}. Then
χ⊠ StG = Q(∆).

(iv) Let σ be an irreducible supercuspidal representation of G. Let ∆ = {σ}. Then
σ = Q(∆).

2. Local Langlands Correspondence

Let V = Cn. Let N ∈ Mn(C) be the standard Jordan block of rank n − 1. Let
{v0, . . . , vn−1} be the standard basis of V . Define a smooth representation ρ of WF by

ρ(x)vi = |x|ivi for 0 ≤ i ≤ n − 1 and x ∈ WF . We form the triple (ρ, V,N) which is a
semisimple Weil-Deligne representation of WF , denoted Sp(n).
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Let Gn(F ) denote the set of equivalence classes of n-dimensional, semisimple, complex
Weil-Deligne representations of the Weil groupWF . Let An(F ) denote the set of equivalence
classes of irreducible smooth representations of G = GLn(F ).

Theorem 15 ([BH06], [CEG+16] Local Langlands Correspondence for GLn). Let ψ be a
non-trivial additive character of F . There is a unique map

rec : An(F ) → Gn(F )

such that for all π ∈ An(F ) and all characters χ of F×,

(i) L(χ⊗ rec(π), s) = L(χ⊠ π, s),
(ii) ε(χ⊗ rec(π), s, ψ) = ε(χ⊠ π, s, ψ).

The map is an isomorphism, and it respects parabolic induction in the following sense:

(i) If ∆ = [π, π(r − 1)] is a segment, then rec(Q(∆)) = rec(π)⊗ Sp(r),
(ii) rec(Q(∆1)⊞ · · ·⊞Q(∆k)) = rec(Q(∆1))⊕ · · · ⊕ rec(Q(∆k)).

Recall that ⊕ and ⊗ are defined for Weil-Deligne representations as follows:

(ρ, V,N)⊕ (σ,W,M) = (ρ⊕ σ, V ⊕W,N ⊕M),

(ρ, V,N)⊗ (σ,W,M) = (ρ⊗ σ, V ⊗W,N ⊗ 1 + 1⊗M).

Example 16. Let G = GL2(F ). Let P = MN be the Levi decomposition of the upper
triangular Borel subgroup of G. We use the same notation as Example 14.

(i) Let χ1, χ2 characters of F× so that χ1χ
−1
2 ̸= |−|±1.

∆1 = {χ1}
∆2 = {χ2}

rec(Q(∆1)⊞Q(∆2)) = rec(Q(∆1))⊕ rec(Q(∆2))

= (χ1 ⊕ χ2,C⊕ C, 0⊕ 0)

= (χ1 ⊕ χ2,C2, 0)

(ii) Let χ1, χ2 be characters of F× so that χ1χ
−1
2 = |−|.

∆1 = {χ|−|1/2}

∆2 = {χ|−|−1/2}

rec(Q(∆1)⊞Q(∆2)) = rec(Q(∆1))⊕ rec(Q(∆2))

= (χ|−|1/2 ⊕ χ|−|−1/2,C⊕ C, 0⊕ 0)

= (χ|−|1/2 ⊕ χ|−|−1/2,C2, 0)

(iii) Let χ1, χ2 be characters of F× so that χ1χ
−1
2 = |−|−1.

∆ = {χ|−|−1/2, χ|−|1/2}

rec(Q(∆)) = rec(χ|−|−1/2)⊗ Sp(2)

= (χ|−|−1/2 ⊗ (1⊕ |−|),C⊗ C2, 0⊗ 1 + 1⊗ ( 0 1
0 0 ))

= (χ|−|−1/2 ⊕ χ|−|1/2,C2, ( 0 1
0 0 ))
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(iv) Let σ be an irreducible supercuspidal representation of G. Then ∆ = {σ} and

rec(σ) = rec(Q(∆)) = rec(σ)⊗ Sp(1) = rec(σ).

So computing rec(σ) cannot be reduced to the case of GL1, i.e. local class field theory.
This tells us that there is some genuine work that needs to be done to figure out rec(σ).
In fact, the reciprocity map rec is completely determined by the images of irreducible
supercuspidal representations. See [BH06] for more discussion.
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