
COMPLETED COHOMOLOGY AND EIGENVARIETIES

ZACHARY FENG

Abstract. An eigenvariety is a rigid analytic space whose points p-adically interpolate
automorphic eigenforms of finite-slope. The goal of these notes is to not only give a detailed
account of Emerton’s particular construction of the eigenvariety via completed cohomology
and the locally analytic Jacquet functor, but to also dissect and isolate the key ingredients
involved in his construction, so that a first time reader has an easier time making the
connection between big picture and minutiae. To this end, the fully worked out examples
are, in my opinion, the most insightful parts of these notes. Chapter 1 summarizes some basic
facts about finding classical automorphic forms in cohomology, and hence why cohomology
is a natural place to look for a construction of the eigenvariety. Chapter 2 summarizes the
theory of “algebraic modular forms”, which is a space of functions defined over Q, and so we
are allowed to tensor with either C or Qp. In the former case, we recover a space of classical
automorphic forms; in the latter case, we get something new: a space of functions which
we will soon call p-adic automorphic forms. This is the first step in translating between
the classical and p-adic theories of automorphic forms, and we have dubbed this dictionary
the “∞-to-p switch”. Chapter 3 defines completed cohomology as a p-adic completion of
these algebraic modular forms, and completed cohomology is precisely the space of p-adic
automorphic forms that we alluded to earlier. The space of classical automorphic forms
sits inside completed cohomology as the subspace of locally algebraic vectors. Chapter 4
explains why applying the locally analytic Jacquet functor is the same as passing to the
finite-slope part, and hence why eigenvarieties only parameterize finite-slope eigenforms.
Finally, Chapter 5 gives Emerton’s construction of the eigenvariety.
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1. Automorphic forms appearing in cohomology

Let A be the ring of adeles of Q. It factorizes as A = R ⊗ A∞ where A∞ is the ring of
finite adeles. Let G be a reductive group over Q. Then G∞ = G(R) is a real Lie group.
Fix a maximal compact subgroup K∞ ≤ G∞. Let K+

∞ be its connected component of the
identity. Let A∞ ≤ G∞ be the R-points of a maximal Q-split torus in the centre of G. Let
A+

∞ be its connected component of the identity.
For an open compact subgroup K∞ of G(A∞), we write

Y (K∞) := G(Q)\G(A)/A+
∞K

+
∞K

∞.

Let Y∞ := G(R)/A+
∞K

+
∞ and Y +

∞ := G(R)+/A+
∞K

+
∞ where G(R)+ is the connected compo-

nent of the identity of G(R). Let G(Q)+ := G(Q) ∩G(R)+. Then

G(Q)\G(A)/A+
∞K

+
∞K

∞ = G(Q)\G(R)×G(A∞)/A+
∞K

+
∞K

∞

= G(Q)\Y∞ ×G(A∞)/K∞.

Since G(Q) is dense in G(R) [Mil04, Theorem 5.4], the natural map G(Q)+\G(R)+ ↪→
G(Q)\G(R) is a bijection. Therefore, the following natural map is a bijection:

G(Q)+\Y +
∞ ×G(A∞)/K∞ ↪→ G(Q)\Y∞ ×G(A∞)/K∞.

Moreover, since G(Q)+\G(A∞)/K∞ is finite [Mil04, Lemma 5.12], one has for g ranging over
a finite set of representatives of G(Q)+\G(A∞)/K∞ the following decomposition:

G(Q)+\Y +
∞ ×G(A∞)/K∞ =

⊔
g

G(Q)+\Y +
∞ ×G(Q)+gK∞/K∞.

Finally, for g ∈ G(A∞) and Γ+
g := gK∞g−1 ∩G(Q)+, there is a natural isomorphism

Γ+
g \Y +

∞ → G(Q)+\Y +
∞ ×G(Q)+gK∞/K∞

[y] 7→ [y, g].

We have exhibited Y (K∞) as a finite union of its connected components:

Y (K∞) =
⊔
g

Γ+
g \Y +

∞ .

This space Y (K∞) is an example of a locally symmetric space.

Remark 1.1. If G is a reductive group over a number field F , we can consider its Weil
restriction G′ = ResFQ G, and apply the above construction to the algebraic group G′ over Q.

Example 1.2. Let G = GL2 /Q. Then K+
∞ = SO2(R) and A+

∞ = R>0. Since R>0 SO2(R) =
GL2(R)i is the stabilizer of i for the action GL2(R) ↷ C, the homogeneous space Y∞ =
GL2(R)/GL2(R)i is equal to the orbit GL2(R)i = H±. Thus Y +

∞ = H.
Let K∞ be either K0(N) or K1(N) defined as follows:

K0(N) :=

{(
a b
c d

)
∈ GL2(Ẑ)

∣∣∣∣∣ c ≡ 0 (mod N)

}
,

K1(N) :=

{(
a b
c d

)
∈ GL2(Ẑ)

∣∣∣∣∣ c ≡ 0 (mod N)
d ≡ 1 (mod N)

}
.
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I claim that the space GL2(Q)+\GL2(A∞)/K∞ is a singleton. To see this, note that the
determinant map det : GL2(A∞)→ A∞,× induces a surjection:

GL2(Q)+\GL2(A∞)/K∞ det−→ Q>0\A∞,×/ det(K∞) = Ẑ×/ det(K∞).

However, det(K∞) = Ẑ× so the codomain is a singleton. It suffices to show that the preimage
of this singleton is a singleton, that is, the following double quotient is a singleton:

GL2(Q)+\GL2(Q)+det−1(1)K∞/K∞.

Indeed, det−1(1) = SL2(A∞) and so

GL2(Q)+\GL2(Q)+ SL2(A∞)K∞/K∞ = GL2(Q)+ ∩ SL2(A∞)\ SL2(A∞)K∞/K∞

= SL2(Q)\ SL2(A∞)K∞/K∞

= SL2(Q)\ SL2(A∞)/ SL2(A∞) ∩K∞.

However, the embedding SL2(Q) ↪→ SL2(A∞) is dense by the strong approximation theorem
[Mil04, Theorem 4.16] and SL2(A∞) ∩K∞ ⊂ SL2(A∞) is open. Therefore,

SL2(A∞) = SL2(Q) [SL2(A∞) ∩K∞] .

This implies that the double quotient is a singleton. Finally, it is straightforward to see that

Γ0(N) = K0(N) ∩GL2(Q)+ ⊂ SL2(Z),
Γ1(N) = K1(N) ∩GL2(Q)+ ⊂ SL2(Z).

Therefore, Y (K∞) has one connected component, equal to the modular curve

(i) Γ0(N)\H if K∞ = K0(N),
(ii) Γ1(N)\H if K∞ = K1(N).

We want to realize automorphic forms in the cohomology of these locally symmetric spaces.
That is, we want to realize automorphic forms as classes in either singular cohomology

Hn(Y (K∞),C)
or more generally, in the cohomology of a local system F on Y (K∞):

Hn(Y (K∞),F).
Let V be a finite-dimensional complex vector space equipped with a representation of the
algebraic group G/C. For an open compact K∞ ≤ G(A∞), we define the space

G(Q)\V × Y∞ ×G(A∞)/K∞.

The action of G(Q) is on all three factors, and K∞ on the rightmost factor. There is a
natural map from this space to Y (K∞) induced by projecting to the right two factors:

G(Q)\V × Y∞ ×G(A∞)/K∞ → G(Q)\Y∞ ×G(A∞)/K∞.

Let FV be the sheaf of sections associated to this map. It is a local system on Y (K∞).

Theorem 1.3. Let G be a reductive group over Q such that Gder is Q-anisotropic. Let V be
a finite-dimensional complex algebraic representation of G(C). Then for all n ≥ 0, there is
a decomposition of modules for the non-archimedean Hecke algebra as follows:

Hn(Y (K∞),FV ) ∼=
⊕
π

(π∞)K
∞ ⊗Hn(a∞\g, K+

∞; π∞ ⊗ V )m(π)
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where a∞ is the Lie algebra of A+
∞, π varies over automorphic representations of G such that

the central character of π∨
∞ restricted to A+

∞ is equal to V |A+
∞
, and m(π) is the automorphic

multiplicity of π.
[GH23, §15.5] [You19, Theorem 1.53]

The choice of K+
∞ in (a∞\g, K+

∞)-cohomology comes from the definition of our locally
symmetric space Y (K∞) which involved a quotient by the subgroup K+

∞. In general, we
have that if g = Lie(G∞) and k = Lie(K∞), then Hn(a∞\g, k;−) = Hn(a∞\g, K+

∞;−).
However, the space Hn(a∞\g, K∞;−) can be smaller, if K∞ is not connected.

Let Y := lim←−K∞ Y (K∞) where the projective limit is taken over the directed set of all open

compact subgroups K∞ ⊂ G(A∞) with suitable transition maps in the category of smooth
real manifolds. Then we get the following:

Theorem 1.4. Let G be a reductive group over Q such that Gder is Q-anisotropic. Let V be
a finite-dimensional complex algebraic representation of G(C). Then for all n ≥ 0, there is
a decomposition of G(A∞)-representations as follows:

Hn(Y,FV ) ∼=
⊕
π

π∞ ⊗Hn(a∞\g, K+
∞; π∞ ⊗ V )m(π)

where a∞ is the Lie algebra of A+
∞, π varies over automorphic representations of G such that

the central character of π∨
∞ restricted to A+

∞ is equal to V |A+
∞
, and m(π) is the automorphic

multiplicity of π.
[GH23, §15.5] [You19, Theorem 1.53]

A formula of this type is called Matsushima’s formula: these formulas say that we can find
automorphic representations in the cohomology of locally symmetric spaces. The variant we
described above only applies to groups G where Gder is Q-anisotropic. However, we will
mostly be working with groups where this condition is satisfied.

Definition 1.5. An algebraic group G over F is called F -anisotropic if there does not exist
an embedding Gm,F ↪→ G of algebraic groups.

Theorem 1.6. Let G be a reductive group over Q. Then the space Y (K∞) is compact for
some K∞ (equivalently, for all K∞) if and only if Gder is Q-anisotropic.
[You19, Theorem 1.32]

Each locally symmetric space attached to G is the disjoint union of symmetric spaces
attached to G. There are two natural compactifications of these symmetric spaces called the
Baily-Borel compactification and the Borel-Serre compactification; see Goresky’s chapter in
[AEK05]. The former only works if your symmetric space has the structure of a Hermitian
symmetric domain, and the latter works in general. The boundary components of these
compactifications are indexed by proper parabolic subgroups of G. Therefore, the locally
symmetric spaces for G are compact if and only if G has no proper parabolic subgroups.
This is thus equivalent to Gder being Q-anisotropic by the preceding result.

Remark 1.7. If Gder is Q-anisotropic, then every automorphic form of G is cuspidal, since
G has no proper parabolic subgroups.

This condition of being Q-anisotropic is satisfied, for example, when G∞ is compact, since
in this case the locally symmetric space attached to G is just a finite collection of points.
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We remark that being Q-anisotropic is actually quite restrictive, since it does not even
apply to the groups G = GLn /Q. Indeed, as we computed above, the locally symmetric
spaces attached to GL2 /Q are not compact. There is a more general version of Matsushima’s
formula which holds for more general groups, but in this generality we are only able to recover
the cuspidal part of the automorphic spectrum in cohomology. Apparently, there is an even
more general version called Franke’s theorem which gives a complicated description of the
entire automorphic spectrum in cohomology. We shall not discuss this at all, but it is briefly
mentioned in [CE12]. In this next example below, we illustrate the idea of Matsushima’s
formula for GL2 /Q via cuspidal cohomology, following the exposition in [You19].

Example 1.8. Let G = GL2 /Q. Let Y (N) := Y (K1(N)) and j : Y (N) ↪→ X(N) be the
standard (Baily-Borel) compactification of Y (N) by adding in the cusps. For k ≥ 2, let
Vk := Symk−2Q2 be the representation of GL2 /Q where Q2 is its standard representation.

Remark 1.9. For a cusp form f ∈ Sk(Γ1(N)) with nebentypus χ, we let ϕf,s denote the
automorphic form on GL2 /Q associated to it, for some choice s of normalization for the power
of the determinant taken in the formula for ϕf,s. Refer to [Fen22, §4.9] for the formula. Let
ω be the adelic character associated to χ. Then the centre A× of GL2(A) acts via right
translation on ϕf,s through the following central character, for z ∈ A×:

z 7→ |z|2s−kω(z).

If s = k/2, then this is called the unitary normalization, since the central character is unitary.
If s = 1, then this is called the arithmetic normalization. Since ω is trivial on R>0, one has
that for r ∈ R>0 = A+

∞ in the centre of GL2(R), the central character restricts to:

r 7→ r2−k.

This cancels out the central character of Vk⊗QR when viewed as a representation of GL2(R).
For the rest of this example, we choose the arithmetic normalization, and so set ϕf := ϕf,1.
Let πf be the automorphic representation generated by ϕf in the appropriate space.

We define the cuspidal, or parabolic cohomology, of GL2 /Q to be the space:

H1
! (Y (N),FVk

) := H1(X(N), j∗FVk
).

This has the following decomposition as modules for the non-archimedean Hecke algebra:

H1(X(N), j∗FVk
) =

⊕
π

(π∞)K1(N) ⊗H1(a∞\gl2, so2; π∞ ⊗ Vk)m(π)

=
⊕
f

(π∞
f )K1(N) ⊗H1(a∞\gl2, so2; π∞ ⊗ Vk).

The fact that m(π) = 1 is a consequence of multiplicity one for GL2. The first sum runs over
cuspidal automorphic representations π of GL2 containing a non-zero K1(N)-fixed vector.
In the second sum, πf is the automorphic representation associated to f , and it runs over
cuspidal newforms f of level M | N , that is, all of the newforms of some level in Sk(Γ1(N)).
To any cusp form f , let fd(z) := f(dz). If f is a newform of level Nf | N , then one has:

(π∞
f )K1(N) =

⊕
dNf |N

Cϕfd .
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When k = 2, we recover the Eichler-Shimura isomorphism, which we explain now. In this
case, we have that FV2 = C and thus j∗C = C so it suffices to compute singular cohomology.

H1(X(N),C) =
⊕
f

( ⊕
dNf |N

Cϕfd

)
⊗H1(a∞\gl2, so2; π∞).

The (a∞\gl2, so2)-cohomology groups for π∞ in the above sum are two-dimensional, and
moreover, by the theory of newforms, for any k ≥ 2, there is a basis:

Sk(Γ1(N)) =
⊕
f

⊕
dNf |N

Cfd.

Therefore, there is a decomposition of modules for the non-archimedean Hecke algebra:

H1(X(N),C) ∼= S2(Γ1(N))⊕ S2(Γ1(N)).

Alternatively, via Hodge theory, one has a canonical decomposition:

H1(X(N),C) = H0(X(N),Ω1
X(N))⊕H0(X(N),Ω1

X(N)).

Recall the usual map f 7→ f dz inducing an isomorphism of Hecke modules:

S2(Γ1(N))→ H0(X(N),Ω1
X(N)).

This recovers the Eichler-Shimura isomorphism:

H1(X(N),C) ∼= S2(Γ1(N))⊕ S2(Γ1(N)).

If π∞ = Dk is a discrete series representation of GL2(R) of weight k ≥ 2, then when
restricted to SL2(R) it breaks up into two irreducible representations called the holomorphic
and antiholomorphic discrete series Dk = D+

k ⊕D
−
k . This induces a decomposition:

H1(a∞\gl2, so2;Dk) = H1(a∞\gl2, so2;D+
k )⊕H

1(a∞\gl2, so2;D−
k )

in which both of the summands are one-dimensional. Indeed, the right-hand side makes
sense because a∞\gl2 ∼= sl2 and this preserves D+

k and D−
k . The summands corresponding

to the holomorphic and antiholomorphic discrete series (D+
2 and D−

2 ) should match up with

S2(Γ1(N)) and S2(Γ1(N)) from the Eichler-Shimura isomorphism.

It now makes sense to ask which automorphic forms show up as classes inside cohomology,
and with which local system they appear. This leads us to the following notion.

Definition 1.10. An automorphic representation π of G is called cohomological if there
exists a complex algebraic representation V of G(C) such that

Hn(a∞\g, K+
∞; π∞ ⊗ V ) ̸= 0

for some n ≥ 0. In this case, π is said to be V -cohomological.

If π is cohomological, it is an interesting question as to which V can be chosen so that π
is V -cohomological. The following result provides a necessary condition for such a V .

Theorem 1.11. If π is V -cohomological, then π∨ has the same infinitesimal character as
V .
[GH23, Theorem 15.5.1]
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Example 1.12. Let π be an automorphic representation ofG = GL2 /Q where π∞ = Dk,µ for
some µ ∈ C is a discrete series (g, K∞)-module of weight k ≥ 2, for g = gl2 and K∞ = O(2).
In this case, we show that there is a natural choice for V so that π is V ∨-cohomological.

Let us recall some facts about discrete series. The centre Z(g) of U(g) is generated by two
elements: the Casimir operator ∆ and Z = ( 1 0

0 1 ). For (s, µ) ∈ C2, define a character χs,µ of
Z(g) by sending Z 7→ µ and ∆ 7→ s(1 − s). For ε ∈ {0, 1}, there is a (possibly reducible)
(g, K∞)-module (π, V ) = (πs,µ,ε, Vs,µ,ε) with infinitesimal character χs,µ and K∞-types:

{l ∈ Z : l ≡ ε (mod 2)}.

It is irreducible unless s = k/2 and k is congruent to ε (mod 2). If k ≥ 1, then πk/2,µ,ε has
a unique infinite-dimensional irreducible subrepresentation Dk,µ with K∞-types:

{l ∈ Z : l ≡ ε (mod 2), |l| ≥ k}.

The quotient πk/2,µ,ε/Dk,µ is irreducible and finite-dimensional, with K∞-types:

{l ∈ Z : l ≡ ε (mod 2), |l| < k}.

This has highest weight k − 2, since l ≡ ε ≡ k (mod 2). There is a short exact sequence:

0→ Dk,µ → πk/2,µ,ε → Symk−2C2 ⊗ |det|(µ−(k−2))/2 → 0.

For more details on these constructions, see [GH23, §4.7] and [Bum97, §2.5]. Let us calculate
the infinitesimal character of the finite-dimensional representation, and show that it is χk/2,µ.
The highest weight λ of the finite-dimensional representation is

λ = [k − 2, 0] + [µ−(k−2)
2

, µ−(k−2)
2

] = [µ+(k−2)
2

, µ−(k−2)
2

].

We remark that λ is algebraic, i.e. λ ∈ X•(T ), if and only if µ ≡ k (mod 2). Let us fix a
choice of positive roots Φ+ for g = gl2. The choice is not important, but let us choose Φ+ to
be the Z≥0-span of ∆ = {e1 − e2}. Let ρ = 1

2
(e1 − e2) denote the half-sum of positive roots.

There is an embedding Z(g) ↪→ U(t) ⊕ U(g)n+ ⊂ U(g). Recall that the Harish-Chandra
isomorphism is induced from the following composition of maps:

tρ : U(t)→ U(t)

X 7→ X − ρ(X)

Z(g) U(t)⊕ U(g)n+ U(t) U(t)incl.

HC

proj tρ

The action of ω ∈ Z(g) on the highest weight vector v is:

ωv = proj(ω)v = λ(proj(ω))v = (λ+ ρ)(HC(ω))v.

Proposition 1.13. Let χ : Z(g) → C be a homomorphism of associative algebras. Then
χ = χλ where χλ = λ ◦ HC for some character λ of t.
[GH23, Proposition 4.6.2]

Therefore, χ = χλ+ρ is the infinitesimal character of the finite-dimensional representation
associated to the discrete series representation Dk,µ. One calculates:

λ+ ρ = [µ+(k−1)
2

, µ−(k−1)
2

].
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To complete our calculation, we shall use an explicit description of ∆.

gl2 = CZ ⊕ CH ⊕ CE ⊕ CF Z(gl2) = C[Z,∆]

E = ( 0 1
0 0 ) F = ( 0 0

1 0 ) Z = ( 1 0
0 1 ) H = ( 1 0

0 −1 )

∆ = −1
4
(H2 + 2EF + 2FE) = −1

4
(H2 + 2H + 4FE) = −1

4
(H2 − 2H + 4EF )

Note that ∆ = −1
4
(H2 + 2H + 4FE) ∈ U(t)⊕ U(g)n+ and tρ(H) = H − 1.

HC(Z) = Z

HC(∆) = −1
4
(tρ(H)2 + 2tρ(H)) = −1

4
(H2 − 1)

(λ+ ρ)(HC(Z)) = µ+(k−1)
2

+ µ−(k−1)
2

= µ

(λ+ ρ)(HC(∆)) = −1
4
((k − 1)2 − 1) = k

2
(1− k

2
)

The key takeaway from this discussion is that the infinitesimal centre acts in the same way
on all three factors of the short exact sequence, so for Dk,µ there is a natural choice of a finite-
dimensional representation V so that Dk,µ is possibly V ∨-cohomological, since they have the
same infinitesimal character. Indeed, we saw previously that Dk,µ is V ∨-cohomological.

Obviously, µ must be chosen in such a way so that the finite-dimensional representation
associated to Dk,µ is algebraic as well, meaning it has an algebraic highest weight λ. We can
detect this with a condition on the infinitesimal character.

Definition 1.14. An irreducible admissible representation π of G(R) having infinitesimal
character χλ is called C-algebraic if it satisfies λ− ρ ∈ X•(T ).
[GH23, Lemma 12.8.1]

Corollary 1.15. Let π be a cohomological cuspidal automorphic representation of G. Then
π∞ is C-algebraic.
[GH23, Corollary 15.5.2]

Recall that the discrete series Dk,µ has infinitesimal character χλ+ρ. So for Dk,µ to be
cohomological, it is necessary that λ = (λ+ρ)−ρ be algebraic. But this is reasonable, since
λ is the highest weight of the finite-dimensional representation associated to Dk,µ.
We can also ask the more elementary question of which automorphic representations π

are cohomological at all. The answer to this is well-known if π∞ is tempered. Let G be a
reductive group over R, then define quantities:

X•(G) := Hom(G,Gm)

G(R)1 :=
⋂

χ∈X•(G)

ker(|−| ◦ χ : G(R)→ R>0).

Definition 1.16. If π is an admissible representation of G(R) on a complex Hilbert space V
equipped with inner product ⟨−,−⟩, then a function G(R)→ C is called a matrix coefficient
of π if it is of the form g 7→ ⟨π(g)v, w⟩ for some v, w ∈ V . More generally, let π∨ denote the
contragredient representation of π, and consider the canonical bilinear pairing B : π×π∨ → C
where B(v, w) = w(v). Then a function G(R)→ C is called a matrix coefficient of π if it is
of the form g 7→ B(π(g)v, w) for some v ∈ π and w ∈ π∨.
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Definition 1.17. Let G be a reductive group over R. An irreducible admissible representa-
tion π of G(R) with unitary central character is called tempered if all matrix coefficients lie
in L2+ε(Z(R)\G(R)) for all ε > 0. Otherwise, π is called essentially tempered if all matrix
coefficients of π|G(R)1 lie in L2+ε((Z(R) ∩G(R)1)\G(R)1) for all ε > 0.

Note that the definition of essentially tempered implicitly assumes that Z(R)∩G(R)1 acts
unitarily on π|G(R)1 . This is justified by the following lemma and proposition.

Lemma 1.18. Let Z be the centre of G as an algebraic group over R. Then every character
of Z has a power that extends to a character of G.

Proof. Since G is reductive, there is a central isogeny with finite kernel K:

Z ×Gder ↠ G.
Let α be a character of Z, and extend it trivially to a character α× 1 of Z ×Gder. Since K
is finite, one can choose n ≥ 1 so that (α × 1)n is trivial on K. Then (α × 1)n factors via
the first isomorphism theorem through a character β of G as follows:

Z ×Gder G

Gm.
(α×1)n

β

It is clear that β|Z = αn. □

Proposition 1.19. Z(R) ∩G(R)1 = Z(R)1.
Proof. Since Z is a reductive group over R, it makes sense to write Z(R)1 by our definition.
Suppose g ∈ Z(R)∩G(R)1, then g ∈ Z(R) and |λ(g)| = 1 for all λ ∈ X•(G). Let µ ∈ X•(Z),
then by the previous lemma, there exists n ≥ 1 so that µn = λ|Z for some λ ∈ X•(G).
However, |λ(g)| = 1 by assumption, so |µ(g)n| = 1. This implies |µ(g)| = 1. Therefore:

Z(R) ∩G(R)1 ⊂ Z(R)1.
The other direction is trivial. □

Therefore, if α is any algebraic character of Z(R), its restriction to Z(R)∩G(R)1 = Z(R)1
is automatically unitary by the definition of Z(R)1.
Indeed, tempered representations are essentially tempered, and being essentially tempered

is insensitive to twists by characters of G(R). Therefore, if π is an irreducible admissible
representation of G(R) with a twist that is tempered and has unitary central character, then
π is essentially tempered.

If π is an smooth irreducible admissible representation of G(F ) where F is a characteristic
zero local field, and G is a reductive group over F , then I believe you can always find a
twist of it with unitary central character. See [Cas95, Lemma 5.2.5] for a proof of this fact
when F is non-archimedean. We remark that if G = GL2 /Q, then actually every cuspidal
automorphic representation of G has a global twist with global unitary central character.
Let d := dimR(Y∞) and define the quantities:

l0 := rkG∞ − rkA+
∞K

+
∞

q0 := (d− l0)/2.
This notation appears in [CE12, §1.6] and [Eme14, §2.1]. When G∞ is semisimple, so that
in particular A∞ is trivial, this notation coincides with that found in [BW00, §4.3].
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Theorem 1.20. Let G be a reductive group over Q. Let π be an automorphic representation
of G such that π∞ is tempered. Then

(i) Hn(a∞\g, K+
∞; π∞ ⊗ V ) = 0 for all finite-dimensional representations V and for all

n /∈ [q0, q0 + l0].
(ii) If Hn(a∞\g, K+

∞; π∞ ⊗ V ) ̸= 0 for some finite-dimensional representation V , then π∞
is fundamentally tempered, i.e. it is induced from a discrete series representation of
the Levi subgroup of a fundamental parabolic subgroup of G∞.

[BW00, Theorem 5.1], [Eme14]

I believe the exact same statements should hold for when π∞ is essentially tempered, except
maybe one has to be careful how to generalize the idea of being fundamentally tempered.
WhenG∞ is semisimple, [BW00, Theorem 5.1] provides a formula to calculate the dimensions
of these cohomology groups in terms of n, l0 and q0.

Remark 1.21. There are tempered representations which do not show up in cohomology.
For k = 1, the “discrete series” representations D1,µ introduced earlier are more commonly
referred to as limit of discrete series. They are (essentially) tempered and correspond to
weight k = 1 classical modular forms. They are not cohomological.

Remark 1.22. (a∞\g, K+
∞)-cohomology satisfies Poincaré duality, that is

Hn(a∞\g, K+
∞; π∞ ⊗ V ) ∼= Hd−n(a∞\g, K+

∞; π∞ ⊗ V )∨.

See [BW00, Proposition 7.6]. So once l0 is determined, q0 = (d − l0)/2 is automatic, since
this is the unique choice for the interval [q0, q0 + l0] to be symmetric about d/2.

Example 1.23. We compute l0 and q0 for some groups.

(i) Let G = SL2 /Q . Then d = dimR Y∞ = 2.

l0 = rk SL2(R)− rk SO2(R) = 1− 1 = 0

q0 = (d− l0)/2 = (2− 0)/2 = 1

(ii) Let G = GL2 /Q . Then d = dimR Y∞ = dimH± = 2.

l0 = rkGL2(R)− rkR>0 SO2(R) = 2− 2 = 0

q0 = (d− l0)/2 = (2− 0)/2 = 1

(iii) Let G be the algebraic group over Q such that G(R) = (D ⊗ R)× where D/Q is a
definite quaternion algebra. Then G∞ = A∞K∞. Thus d = dimR Y∞ = 0 and moreover:

l0 = q0 = 0.

(iv) Let G = U(n, F/F+,M) be the algebraic group over F+ such that

G(R) = {g ∈ GLn(F ⊗F+ R) : g†Mg =M}.
Here F+ is a totally real field, and F/F+ a totally imaginary extension. The operator
(−)† acts on g ∈ GLn(F ⊗F+ R) by first sending g 7→ g⊤, then it acts on the entries of
g by applying the unique non-trivial Galois automorphism of F/F+ on the left factor
of F ⊗F+ R. It is essentially “conjugate transpose”. The matrix M ∈ GLn(F ) satisfies
M † = M , i.e. it is Hermitian. If F+ = Q, F = Q(i), and M = Idn, then G(R) is the
usual unitary group U(n)(R) which is compact. Therefore, G∞ = K∞ and this forces

d = l0 = q0 = 0.
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An important class of (essentially) tempered representations are the (essentially) discrete
series representations. By definition, all discrete series representations are fundamentally
tempered, and hence discrete series representations are all cohomological.

Definition 1.24. Let G be a reductive group over R. An irreducible admissible representa-
tion π of G(R) with unitary central character is called discrete series if all matrix coefficients
lie in L2(Z(R)\G(R)). Otherwise, π is called essentially discrete series if all matrix coeffi-
cients of π|G(R)1 lie in L2((Z(R) ∩G(R)1)\G(R)1).

The “discrete series” representations Dk,µ introduced previously are all essentially discrete
series under this definition. The ones with unitary central character are discrete series.

It is a theorem of Harish-Chandra that a semisimple Lie group admits discrete series if
and only if l0 = 0 [Eme14]. A reductive Lie group admits discrete series if and only if its
derived subgroup admits discrete series.

Theorem 1.25. Let G be a reductive group over Q such that G(R) is compact modulo centre.
Then the irreducible admissible representations of G(R) are all essentially discrete series.

Proof. Every irreducible admissible representation of G(R) can be twisted to have unitary
central character. After twisting, every matrix coefficient is square-integrable modulo centre,
since G(R) is compact modulo centre, and hence the twisted representation is discrete series.
Thus the original representation is essentially discrete series. □

Corollary 1.26. Let G be a reductive group over Q such that G(R) is compact. Then every
automorphic representation of G is cohomological in degree zero.

Proof. By above theorem, if π is an automorphic representation of G, then π∞ is essentially
discrete series, and hence π is cohomological. Since G(R) is compact, G∞ = K∞ and so

d = l0 = q0 = 0.

Therefore, π appears in cohomological degree zero. □

Remark 1.27. If G is a reductive group such that G(R) is compact modulo centre, then its
locally symmetric spaces Y (K∞) for open compact K∞ ≤ G(A∞) may have non-vanishing
cohomology outside of degree zero. For example, if F is a number field, consider

G = ResF/Q Gm.

However, if G/Q is a reductive group such that its maximal Q-split torus is also maximal
R-split, then its only non-vanishing cohomology is indeed in degree zero. Moreover, such
groups also satisfy that G(R) is compact modulo centre. Therefore, for such groups, degree
zero cohomology contains all of its automorphic representations. This condition was first
introduced in [Gro99, Proposition 1.4] and discussed in [Eme06b, §3.2].

2. Switching from ∞ to p

Remark 2.1. This section is based on [Eme06b, §3] and [Gro99, §4,§8].

Let G be a reductive group over Q. In the classical setting over the complex numbers, we
call a smooth function ϕ : G(A)→ C an automorphic form if

(i) ϕ(γg) = ϕ(g) for all γ ∈ G(Q) and g ∈ G(A).
(ii) ϕ is K∞-finite.
(iii) ϕ is Z(gC)-finite.
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(iv) ϕ is of moderate growth, i.e. there exist C,N > 0 such that |f(g)| < C∥g∥N for all
g ∈ G(A) for some adelic height function ∥−∥ on G(A).

This is the space of automorphic forms on G, which we denote A(G). On top of this, we
may additionally fix any of the following three parameters:

(a) a K∞-type (ρ,W ), where ρ : K∞ → GL(W ) is an irreducible, hence finite-dimensional,
representation such that the vector space generated by the K∞-translates of ϕ are iso-
morphic to the direct sum of a finite number of copies of W .

(b) a level K∞, where K∞ is an open compact subgroup of G(A∞) such that ϕ(gk) = ϕ(g)
for all k ∈ K∞.

(c) a central character ω, where ω is a character on the centre Z(A) of G(A) such that
ϕ(zg) = ω(z)ϕ(g) for all z ∈ Z(A) and g ∈ G(A).

We denote the subspace A(G) corresponding to these parameters by:

A(G, ω,W,K∞) ⊂ A(G).

If G(R) is not compact, then it is necessary to fix a central character so that we work with
the subspace A(G, ω) ⊂ A(G) and not A(G) directly.

Proposition 2.2. If G(R) is compact, then for functions in A(G), conditions (iii) and (iv)
are implied by conditions (i) and (ii). If G(R) is compact modulo centre, then the same
conclusion holds for functions in A(G, ω) for a fixed central character ω.

The proposition tells us that, in particular, for groups G such that G(R) is compact or
compact modulo centre, conditions (iii) and (iv) in the definition of an automorphic form are
redundant. Hence only the algebraic conditions imposed by (i) and (ii) are relevant. This
suggests that a purely algebraic definition of automorphic forms may be possible.

To simplify exposition, from now on let us assume G(R) is compact. For a fixed irreducible
finite-dimensional representation (σ, V ) of G(R), we can consider the space of V -valued
modular forms M(G, V ) which consists of smooth functions F : G(A)→ V such that

(i) F (γg) = F (g) for all γ ∈ G(Q) and g ∈ G(A).
(ii) F (gk) = σ(k−1)F (g) for all k ∈ G(R)+ and g ∈ G(A).

As before, we can additionally fix a level K∞, requiring F (gk) = F (g) for all k ∈ K∞, and
call the subspace corresponding to this parameterM(G, V,K∞) ⊂M(G, V ).

Since G(R) is compact, its maximal compact subgroup K∞ must equal itself. So there is
no difference between choosing K∞-types or G(R)-representations. By choosing (σ, V ) to be
a K∞-type, which is at the same time a G(R)-representation, the spacesM(G, V,K∞) and
A(G, V,K∞) are both well-defined. If G(R) is moreover connected, so that G(R)+ = G(R)
in condition (ii) of the definition ofM, thenM is related to A as follows.

Proposition 2.3. If G(R) is compact and connected, then there is an isomorphism of com-
plex vector spaces respecting a suitably defined level K∞ Hecke action on both sides:

M(G, V,K∞)→ HomG(R)×K∞(V ∨,A(G, V ∨, K∞))

F 7→ TF (λ) := λ ◦ F.

This induces a one-to-one correspondence between simple Hecke modules on the left and
automorphic representations π = π∞ ⊗ π∞ of G such that π∞ ∼= V ∨ and (π∞)K

∞ ̸= 0.
[Gro99, Proposition 8.5]
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Why go through all the trouble to reinterpret automorphic forms? Well, the reason is
because the space of functions on the left-hand side admit a cohomological description.

Let U/Q be an algebraic representation of G(Q). If G(R) is compact, then we have already
seen that all of its automorphic representations are cohomological in degree zero, and it has
no other non-vanishing cohomology. The zeroth cohomology group H0(Y (K∞),FU) is by
definition the space of global sections of FU , consisting of locally constant sections:

G(Q)\G(R)×G(A∞)/A+
∞K

+
∞K

∞ → G(Q)\U ×G(R)×G(A∞)/A+
∞K

+
∞K

∞.

Indeed, these functions are constant on G(R)+ ⊃ A+
∞K

+
∞ and K∞-cosets. So this space of

locally constant sections consists of functions f : G(A)→ U satisfying

(i) f(γg) = γf(g) for all γ ∈ G(Q).
(ii) f(gk) = f(g) for all k ∈ G(R)+K∞.

Thus H0(Y (K∞),FU) is a Q-vector space. If we tensor it with C, we get the same space of
functions, except with codomain U ⊗ C. The space U ⊗ C comes with an upgraded action
of G(C) which restricts to an action of G(R).

Proposition 2.4. There is a Hecke-equivariant isomorphism:

H0(Y (K∞),FU)⊗ C→M(G, U ⊗ C, K∞)

f 7→ F∞(g) := g−1
∞ f(g).

[Gro99, Proposition 8.3]

We take a step back to summarize what we have achieved so far:

(a) For groups G such that G(R) is compact and connected, there is a bijection between
simple submodules ofM(G, V,K∞) and automorphic representations π = π∞⊗π∞ such
that π∞ ∼= V ∨ and (π∞)K

∞ ̸= 0.
(b) If G(R) is compact, thenM(G, V,K∞) is isomorphic to H0(Y (K∞),FV ) as modules for

the level K∞ Hecke algebra.
(c) So simple submodules of H0(Y (K∞),FV ) correspond bijectively with the automorphic

representations π = π∞ ⊗ π∞ such that π∞ ∼= V ∨ and (π∞)K
∞ ̸= 0. This matches up

with the statement of Matsushima’s formula. Moreover, as we vary V and K∞, we will
exhaust all automorphic representations of G. This matches up with our observation
that all automorphic representations of G are cohomological in degree zero.

We now attempt to move from∞ to p. Fix an irreducible finite-dimensional representation
of G(Qp) on a Qp-vector spaceM . Let K∞ = KpK

p be an open compact subgroup of G(A∞)
that is a product of open compact subgroups Kp ≤ G(Qp) and Kp ≤ G(A∞,p). We may
then define the space of M -valued p-adic modular forms Mp(G,M,KpK

p) as the space of
smooth functions F : G(A)→M satisfying the following conditions:

(i) F (γg) = F (g) for all γ ∈ G(Q).
(ii) F (gk) = F (g) for all k ∈ G(R)+Kp.
(iii) F (gkp) = k−1

p F (g) for all kp ∈ Kp.

This space also comes from cohomology. Let U/Q be an algebraic representation of G(Q).

Proposition 2.5. There is a Hecke-equivariant isomorphism:

H0(Y (KpK
p),FU)⊗Qp →Mp(G, U ⊗Qp, KpK

p)

f 7→ Fp(g) := g−1
p f(g).
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[Gro99, Proposition 8.6]

Going back to the analogy with our earlier construction, we want to find some space of
p-adic automorphic forms “Ap” so that an isomorphism of the following type holds:

Mp(G,M,KpK
p)

∼−→ Hom(...)(M
∨,Ap).

This hypothetical space Ap turns out to exist, and will be the space of locally analytic vectors

in degree zero of completed cohomology (H̃0)la to be constructed in the next section.
By taking the limit over open compact subgroups Kp of G(Qp), we can equip the space

lim−→
Kp

Mp(G,M,KpK
p)

with an action of G(Qp) via x·F (g) := xF (gx). The following lemma shows it is well-defined.

Lemma 2.6. If F ∈Mp(G,M,KpK
p) and x ∈ G(Qp), then

x · F ∈Mp(G,M, xKpx
−1Kp).

Proof. Let y ∈ xKpx
−1 so y = xkx−1 for some k ∈ Kp. Then y

−1 = xk−1x−1 and

y−1(x · F )(g) = xk−1x−1xF (gx) = xk−1F (gx) = xF (gxk) = xF (gyx) = (x · F )(gy). □

By taking the limit over open compact subgroups Kp of G(Qp), we can equip the space

lim−→
Kp

H0(Y (KpK
p),FM)

with an action of G(Qp) via x · f(g) := f(gx). The following lemma shows it is well-defined.

Lemma 2.7. If f ∈ H0(Y (KpK
p),FM) and x ∈ G(Qp), then

x · f ∈ H0(Y (xKpx
−1Kp),FM).

Proof. Let y ∈ xKpx
−1 so y = xkx−1 for some k ∈ Kp. Then

(x · f)(gy) = f(gyx) = f(gxk) = f(gx) = (x · f)(g). □

In particular, this action commutes with the isomorphismsMp
∼−→ H0 for each fixed Kp.

This action is also smooth, because the action of Kp is trivial in both cases. This will be the
smooth part of certain “locally algebraic” representations introduced in the next section.

Finally, we introduce a way to view Mp as a cohomology group directly, and not just
isomorphic to a cohomology group, as seen above.

Definition 2.8. Let K∞ = KpK
p be a compact open subgroup of G(A∞). If M/Qp is a

Kp-module, consider the following cover of Y (KpK
p) with structure map:

(M × (G(Q)\G(A)/A+
∞K

+
∞))/KpK

p → G(Q)\G(A)/A+
∞K

+
∞KpK

p = Y (KpK
p).

Here the action of K∞ on M is via m · k = k−1
p m and the action on the second factor is via

right-translation. Let GM denote the sheaf of locally constant sections of this cover. It is a
local system on Y (K∞).

Let M/Qp be a representation of G(Qp). Then it is immediate from the definitions that

H0(Y (KpK
p),GM) =Mp(G,M,KpK

p).

This should not be confused with the following isomorphism, which is not an equality:

H0(Y (KpK
p),FM)

∼−→Mp(G,M,KpK
p).
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Let ι : C ∼−→ Qp be any isomorphism. If V/C is a complex representation of G/C, then we

can view V as a Qp-vector space with an action of G/Qp via ι. Let us call this representation

M . In particular, M comes with a representation of G(Qp) ⊂ G(Qp).

Proposition 2.9. Let K∞ = KpK
p ≤ G(A∞) be open compact. Then there is a natural

isomorphism of π0 := (G(R)/G(R)+)-equivariant Qp-local systems over Y (KpK
p):

FM
∼−→ GM .

[Eme06b, Lemma 2.2.4]

Example 2.10. Let G = GL1 /Q. This does not fit into the framework developed above
because G(R) = R× is not compact. But I think it’s a clarifying example to think about.
At least, it was the first example that made sense to me. We follow [Buz04] and [Sno10].

Definition 2.11. A continuous map Q×\A× → C× is called a Hecke character.

Every automorphic representation of G is the C-span of a Hecke character, and vice versa.
In particular, automorphic representations of G are one-dimensional. Recall:

Q×\A× = R>0 ×
∏
p

Z×
p .

Let ϕ be a Hecke character. The restriction of ϕ to
∏

p Z×
p is a finite order character, as

are all continuous characters from a profinite group to C×. The restriction of ϕ to R>0 is a
character x 7→ xa for some real number a, as are all continuous characters from R>0 → C×.
Therefore, ϕ = ηκa∞ for some finite order character η on

∏
p Z×

p and κ∞ : R>0 → C× is the
inclusion map. Every Hecke character has this form.

Definition 2.12. A Hecke character ϕ = ηκa∞ is called algebraic if a ∈ Z.

Definition 2.13. A continuous map Q×\A× → Q×
p is called a p-adic Hecke character.

Let ϕ be a p-adic Hecke character. The restriction of ϕ to R>0 is trivial because the
topologies on R>0 and Qp are terribly mismatched. The restriction of ϕ to

∏
l ̸=p Z

×
l is a

finite order character. The restriction of ϕ to Z×
p is some continuous homomorphism.

Definition 2.14. A p-adic Hecke character is called algebraic if there is a compact open
subgroup U of Z×

p such that ϕ|U(x) = xn for some n ∈ Z.

Therefore, every algebraic p-adic Hecke character ϕ has the form ϕ = ηκnp for some integer

n where η is a finite order character on
∏

p Z×
p and κp : Z×

p → Q×
p is the inclusion map.

Given an algebraic Hecke character ηκn∞, we can kill the action at ∞ to get a locally
constant character η, and then add back the same action at p to get ηκnp . This process is the
“∞-to-p switch”. It is made possible by the fact that x 7→ xn is a character of the algebraic
group G/Q, which we can then tensor over either C or Qp to make sense in either setting.

In the setting of this chapter, with G a reductive group over Q such that G(R) is compact
and connected, the analogous algebraicity condition is the choice of a representation U/Q
of the algebraic group G/Q. Then passing between complex automorphic forms A and the
soon to be introduced p-adic automorphic forms Ap is just a matter of tracing your objects
along the following identifications which have already been introduced. Let U∞ := U ⊗ C
denote the representation G(R) and Up := U ⊗Qp denote the representation of G(Qp).
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H0(Y (K∞),FU)⊗ C H0(Y (KpK
p),FU)⊗Qp

M(G, U∞, K
∞) Mp(G, Up, KpK

p)

HomG(R)×K∞(U∨
∞,A(G, U∨

∞, K
∞)) Hom(...)(U

∨
p ,Ap)

ι:C
∼−→Qp

The top horizontal arrow denotes passage between the two spaces H0 of locally constant
functions. This corresponds to the step in the “∞ to p switch” when all the action at∞ has
been killed, so you are just left with a locally constant function, so you change your base
field from C to Qp in anticipation of adding back the action at p.

3. Completed cohomology

Remark 3.1. This section is based on [Eme06b, §2], [Gro99, §8,§9], [ST04, §2,§3,§4],
[Eme17].

Let G be a reductive group over Q such that G(R) is compact and connected. Then its
automorphic representations are all essentially discrete series, hence cohomological, and they
can all be found in degree zero of cohomology of some local system.

If M is a G(Qp)-representation on a Qp-vector space, then recall from before that we can

form the Qp-local system GM , and the following Qp-vector space:

H0(Y (KpK
p),GM) =Mp(G,M,KpK

p).

We want to “complete” this cohomology group. So our next immediate step should be to
look for a suitable integral lattice inside it, in order to take reductions modulo a prime.

For technical reasons, it will be easier to work with vector spaces over a finite extension
of Qp rather than Qp. So let us fix a finite extension E/Qp contained inside Qp, and let
M be a G(Qp)-representation on a E-vector space. If E is chosen so that G splits over E,

then any representation of G on a Qp-vector space descends uniquely, up to an isomorphism,
to a representation of G on a E-vector space. Therefore, there is no loss of generality by
restricting ourselves to considering only representations on E-vector spaces.

Let K∞ = KpK
p be an open compact subgroup of G(A∞). Let M0 denote a OE-lattice

inside M such that KpM0 ⊂M0. Then it makes sense to define the OE-local system GM0 on
Y (KpK

p) which is a subsheaf of GM . Taking global sections gives an OE-submodule

H0(Y (KpK
p),GM0) ⊂ H0(Y (KpK

p),GM).

By its translation properties, a function F : G(A)→M in H0(Y (KpK
p),GM) is determined

by its values on any set of coset representatives for the finite quotient:

Y (KpK
p) = G(Q)\G(A)/G(R)+KpK

p.

Therefore, tensoring up to E yields an isomorphism of E-vector spaces:

H0(Y (KpK
p),GM0)⊗OE

E
∼−→ H0(Y (KpK

p),GM).

We now want to vary the level Kp. Let S denote the directed set of all open compact
subgroups of G(Qp), directed downward by inclusion. Let M0 be a separated lattice in M .
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Definition 3.2. Let ϖ be a uniformizer of OE. Then an OE-module M0 is separated if⋂
n≥0

ϖnM0 = 0.

Let SM0 denote the directed subset of S consisting of those open compact subgroups which
preserve the lattice M0. If G0 is the maximal subgroup of G(Qp) preserving M0, then G0

is open compact in G(Qp), and SM0 is precisely the open subgroups of G0. It then follows
immediately that SM0 is cofinal in S. This is the key property that we were going after.
Indeed, this is what tells us that varying over open compact subgroups in SM0 is an accurate
reflection of varying over all open compact subgroups. If M ′

0 is another separated lattice in
M , then the intersection SM0 ∩ SM ′

0
is cofinal in each of SM0 , SM ′

0
and S.

We now fix a tame level Kp, that is, a compact open subgroup Kp of G(A∞,p). We finally
define the objects involved in our discussion of completed cohomology.

H̃0(Kp,GM0) := lim←−
s

lim−→
Kp∈SM0

H0(Y (KpK
p),GM0/p

s)

H̃0(Kp,GM0)E := H̃0(Kp,GM0)⊗OE
E

The inductive and projective limits are taken with respect to the obvious transition maps.

This is an OE-module, and an E-vector space, respectively. The image of H̃0(Kp,GM0) in

H̃0(Kp,GM0)E is an OE-lattice. These objects actually have a much richer structure, but to
describe them we will first need to take a detour to define many of the fundamental objects
involved in locally analytic representation theory. This will be the context in which we work
from now on, so it is a worthwhile investment. Henceforth let E denote any non-archimedean
field with absolute value |−|, which includes any finite extension of Qp.

Definition 3.3. Let V be an E-vector space. A (non-archimedean) semi-norm q on V is a
function q : V → R such that:

(i) q(av) = |a|q(v) for all a ∈ E and v ∈ V .
(ii) q(v + w) ≤ max(q(v), q(w)) for all v, w ∈ V .

The E-vector space V is in particular anOE-module, so we may consider itsOE-submodules.

Definition 3.4. A lattice in an E-vector space V is an OE-submodule L such that for every
v ∈ V there exists a ∈ E× such that av ∈ L.
[ST04, §2]

Remark 3.5. The source [ST04, §2] imposes no other conditions in the definition of a lattice,
but I think it is not enough. For instance, the current definition does not imply that the
following natural map is an isomorphism of E-vector spaces: L⊗OE

E
∼−→ V .

Definition 3.6. For a lattice L in V , define its gauge pL to be:

pL : V → R
v 7→ inf

v∈aL
|a|.

If q is a semi-norm on V , define OE-submodules:

L(q) := {v ∈ V : q(v) ≤ 1} and L−(q) := {v ∈ V : q(v) < 1}.

Lemma 3.7. (a) For a lattice L in V , its gauge pL is a semi-norm.
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(b) For a semi-norm q on V , the OE-submodules L(q) and L−(q) are lattices.
(c) For a lattice L in V : L−(pL) ⊂ L ⊂ L(pL).
(d) For a semi-norm q on V : cpL(q) ≤ q ≤ pL(q) where c := sup|b|<1|b|.

[ST04, Lemma 2.1]

Let {Lj}j∈J be a non-empty family of lattices in an E-vector space V such that:

(LC1) For any j ∈ J and a ∈ E× there exists k ∈ J such that Lk ⊂ aLj.
(LC2) For any two i, j ∈ J there exists k ∈ J such that Lk ⊂ Li ∩ Lj.

Definition 3.8. The subsets {v + Lj}v∈V,j∈J form the basis of a topology on V . This is
called the locally convex topology on V defined by the family {Lj}j∈J .

Definition 3.9. A locally convex E-vector space is an E-vector space V equipped with a
locally convex topology.

There is an alternative description of locally convex vector spaces via semi-norms. Let
{qi}i∈I be a family of semi-norms on an E-vector space V . By definition, the topology on V
defined by the family {qi}i∈I is the coarsest topology on V such that:

(i) For all i ∈ I, qi : V → R is continuous.
(ii) For all v ∈ V , the translation-by-v map V → V is continuous.

For any finitely many semi-norms qi1 , . . . , qir in {qi}i∈I and real number ε > 0, define:

V (qi1 , . . . , qir ; ε) := {v ∈ V : qi1(v), . . . , qir(v) ≤ ε}.

Lemma 3.10. V (qi1 , . . . , qir ; ε) is a lattice in V . The family of all such lattices satisfies
(LC1) and (LC2) and hence defines a locally convex topology on V .
[ST04, Lemma 3.1]

Proposition 3.11. (a) The topology on V defined by the family of semi-norms {qi}i∈I co-
incides with the locally convex topology on V defined by the family of lattices

{V (qi1 , . . . , qir ; ε) : i1, . . . , ir ∈ I, ε > 0}.
(b) The locally convex topology on V defined by the family of lattices {Lj}j∈J coincides with

the topology defined by the family of gauges {pLj
}j∈J .

Proposition 3.12. Let V be a locally convex E-vector space. The following are equivalent:

(a) V is Hausdorff.
(b) For any non-zero v ∈ V , there exists j ∈ J such that v /∈ Lj.
(c) For any non-zero v ∈ V , there exists i ∈ I such that qi(v) ̸= 0.

We describe an important class of locally convex vector spaces called Fréchet spaces.

Proposition 3.13. Let V be a Hausdorff locally convex E-vector space. The following are
equivalent:

(a) V is metrizable.
(b) The topology on V can be defined by a countable family of lattices.
(c) The topology on V can be defined by a countable family of semi-norms.

[ST04, Proposition 5.1]

Definition 3.14. A locally convex E-vector space V is called an E-Fréchet space if it is
metrizable and complete.
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We describe an important class of Fréchet spaces called Banach spaces.

Definition 3.15. A semi-norm q on V is called a norm if q(v) = 0 implies v = 0. An
E-vector space equipped with a norm, denoted ∥−∥, is called a normed E-vector space.

Definition 3.16. A normed E-vector space is called an E-Banach space if the corresponding
metric space is complete.

Indeed, an E-Banach space is an E-Fréchet space. More generally, any countable projective
limit of E-Banach spaces is an E-Fréchet space.

We return to our discussion about completed cohomology. Recall that the image of

H̃0(Kp,GM0) in H̃0(Kp,GM0)E is an OE-lattice. We can thus regard H̃0(Kp,GM0)E as a
semi-normed space, where the semi-norm is given by the gauge of the lattice. The results of

[Eme06b, §2.1] then show that H̃0(Kp,GM0)E is actually an E-Banach space.
Let M0 ⊂ M ′

0 be an inclusion of separated lattices in M . This induces an injection of
sheaves GM0 → GM ′

0
. Taking global sections and some limits then induces an injection of

OE-modules H̃0(Kp,GM0)→ H̃0(Kp,GM ′
0
). Tensoring up to E induces a continuous map of

E-Banach spaces H̃0(Kp,GM0)E → H̃0(Kp,GM ′
0
)E.

Lemma 3.17. If M0 ⊂M ′
0 is an inclusion of separated lattices in M , then the induced map

of E-Banach spaces H̃0(Kp,GM0)E → H̃0(Kp,GM ′
0
)E is a topological isomorphism.

[Eme06b, Lemma 2.2.8]

Definition 3.18.
H̃0(Kp,GM) := lim−→

M0

H̃0(Kp,GM0)E.

The locally convex inductive limit of a diagram is the inductive limit of vector spaces equipped
with the finest locally convex topology so that the natural inclusion maps are all continuous.
Here the locally convex inductive limit is taken over the directed set of separated lattices
M0 in M , directed by inclusion.

Because the transition maps in the inductive limit are isomorphisms, for any choice ofM0,

the natural inclusion maps H̃0(Kp,GM0)E → H̃0(Kp,GM) are also topological isomorphisms.

Therefore, H̃0(Kp,GM) has the structure of an E-Banach space.
If g ∈ G(Qp) and M0 is a separated lattice in M , then gM0 is a separated lattice in M .

So G(Qp) acts on the directed set of separated lattices in M .

Lemma 3.19. The action of G(Qp) on the directed set of separated lattices in M lifts to a

continuous action of G(Qp) on the inductive system H̃0(Kp,GM) = lim−→M0
H̃0(Kp,GM0)E.

[Eme06b, Lemma 2.2.10]

Proof. The following map is an isomorphism of OE-modules:

H0(Y (KpK
p),GM0)

∼−→ H0(Y (g−1KpgK
p),Gg−1M0

)

F (x) 7→ g−1F (xg−1).

This induces the following isomorphism on the completed cohomology groups:

H̃0(Kp,GM0)
∼−→ H̃0(Kp,Gg−1M0

).

Taking the inductive limit across all possible M0 produces the required action:

H̃0(Kp,GM)
∼−→ H̃0(Kp,GM).
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For any M0, there is an open compact subgroup G0 of G(Qp) that preserves it. This implies
that the G(Qp) action on the inductive system over all M0 is continuous. □

So G(Qp) acts on the E-Banach space H̃0(Kp,GM). The action is both continuous and
admissible, the latter being a notion which we shall now define. Let us begin with a brief
overview of locally analytic groups, which is required in the definition of admissibility.

Let F be a non-archimedean field, with absolute value |−|. We typically choose F to be
a finite extension of Qp. For α ∈ Zn

≥0, denote |α| := α1 + · · ·+ αn and tα := tα1
1 . . . tαn

n .

Definition 3.20. Let U ⊂ F n be open. We say that a function g : U → Fm is locally
analytic if for all x0 ∈ U , there exists ε > 0 so that for all x ∈ U with ∥x− x0∥ ≤ ε one has:

g(x) = (G1(x− x0), . . . , Gm(x− x0))
whereGj(t) =

∑
α∈Zn

≥0
cj,αt

α ∈ F Jt1, . . . , tnK satisfies lim|α|→∞ ε|α|cj,α = 0 for all j = 1, . . . ,m.

The space of all such functions is denoted Cla(U, Fm).

Remark 3.21. In [Sch11, §6], he extends the notion of locally analyticity to functions
U → V for open subsets U ⊂ F n and F -Banach spaces V .

A locally F -analytic manifold is a pair (X,A) where X is a Hausdorff topological space,
and A is a maximal atlas whose charts induce isomorphisms between open sets in X and
open sets in F n for a fixed n. It is locally analytic in the sense that the transition maps
between charts are locally analytic in the sense defined above. See [Sch11, §7] for details.

Definition 3.22. A locally F -analytic group is a locally F -analytic manifold G together
with a group structure in which the multiplication map G×G→ G is locally analytic.

Let F be a finite extension of Qp, and E be an extension of F , complete with respect to
a discrete valuation extending the discrete valuation on F .

If X is a locally F -analytic manifold, and V is a Hausdorff locally convex E-vector space,
then it is possible to define more generally locally analytic functions X → V . The idea
is that we only consider functions X → V whose image land inside subspaces of V that
are actually E-Banach spaces, and take their union. These subspaces are called BH-spaces.
The space of all locally analytic functions X → V is denoted Cla(X, V ). For the precise
definitions of these spaces, please refer to [Eme17, Definition 2.1.25] and [ST04, §10].

Definition 3.23. Let V be a Hausdorff locally convex E-vector space. We say that V is an
FH-space if it admits a complete metric that induces a locally convex topology on V finer
than its given topology. We refer to the topological vector space structure on V induced by
such a metric as a latent Fréchet space structure on V . If this latent Fréchet space structure
can be defined by a norm, so that it is in fact a latent Banach space structure, then we say
that V is a BH-space.
[Eme17, Definition 1.1.1]

Definition 3.24. Let V be a Hausdorff locally convex E-vector space. We say that V
is of LF-type (resp. LB-type) if we can write V =

⋃∞
n=1 Vn for some increasing sequence

V1 ⊂ V2 ⊂ V3 ⊂ . . . of FH-spaces (resp. BH-spaces).
[Eme17, Definition 1.1.9]

Definition 3.25. Let V be a locally convex E-vector space. We say that V is an LF-space
(resp. LB-space) if it is isomorphic to the locally convex inductive limit of a sequence of
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E-Fréchet spaces (resp. E-Banach spaces).
[Eme17, Definition 1.1.16(i)]

Definition 3.26. Let V be a Hausdorff locally convex E-vector space. We say that V is of
compact type if it is isomorphic to the locally convex inductive limit of a sequence of locally
convex E-vector spaces in which the transition maps are compact.
[Eme17, Definition 1.1.16(ii)]

Remark 3.27. I do not know the origin of the terms FH, BH, LF, and LB. However, you
may find the mnemonics “FH = Fréchet, Has” (resp. “BH = Banach, Has”) and “LF =
Limit Fréchet” (resp. “LB = Limit Banach”) to be helpful.

Definition 3.28. Let X be a Hausdorff topological space, and V be a Hausdorff locally
convex E-vector space. Let C(X, V ) denote the E-vector space of continuous V -valued func-
tions on X, equipped with the (Hausdorff locally convex) topology of uniform convergence
on compact sets.
[Eme17, Definition 2.1.2]

Proposition 3.29. Let V be a Hausdorff locally convex E-vector space and X be a locally
F -analytic manifold. Then evaluation at points of X induces a continuous injection

Cla(X, V )→ C(X, V ).

It is natural in the sense that it is compatible with the functorial properties of its source and
target. Moreover, this injection has dense image.
[Eme17, Proposition 2.1.26]

Definition 3.30. If X is a Hausdorff topological space, then we let D(X,E) denote the dual
space to the locally convex E-vector space C(X,E). This is the space of E-valued measures
on X.
[Eme17, Definition 2.2.1]

Definition 3.31. If X is a locally F -analytic manifold, then we let Dla(X,E) denote the
dual space to the locally convex E-vector space Cla(X,E). This is the space of E-valued
locally analytic distributions on X.
[Eme17, Definition 2.2.3]

The dual space to a locally convex space can be endowed with various non-canonical locally
convex topologies. Frequently, we shall endow these spaces with their strong topologies, in
which case we add the subscript “b” to emphasize this, i.e. D(X,E)b or Dla(X,E)b.

Proposition 3.32. Let G be a locally compact topological group.

(a) There is an associative product on D(G,E)b.
(b) If V is a Hausdorff locally convex E-vector space equipped with a continuous G-action,

then we can view V ′
b as a left D(G,E)b-module.

[Eme17, Corollary 5.1.7]

Proposition 3.33. Let G be a locally F -analytic group.

(a) There is an associative product on Dla(G,E)b.
(b) If V is a Hausdorff LF-space over E equipped with a locally analytic action of G, then

we can view V ′
b as a left Dla(G,E)b-module.

[Eme17, Corollary 5.1.9]
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We have yet to define locally analytic representations, but when we do, we will also wish
to consider a subset of them which are admissible, and the definition of admissibility is a
finiteness condition on modules over the distribution algebra.

Definition 3.34. Let G be a locally F -analytic group. A continuous G-action on an E-
Banach space V is an admissible continuous representation of G if V ′

b is finitely generated
as a left D(H,E)b-module for one (and hence every) compact open subgroup H of G.
[Eme17, Proposition-Definition 6.2.3]

Definition 3.35. Let G be a locally F -analytic group, and Γ a locally compact group. Let
V be a Hausdorff locally convex E-vector space equipped with a topological action of G×Γ.
We say that V is an admissible continuous representation of G× Γ if:

(i) For each open compact subgroup H of Γ, the closed subspace V H in V is an E-Banach
space, and the G-action on V H is an admissible continuous G-representation.

(ii) The Γ-action on V is strictly smooth, that is, the natural map lim−→H
V H → V is a

topological isomorphism, where the locally convex inductive limit is taken over all open
compact subgroups H of Γ.

[Eme17, Definition 7.2.1]

We return to our discussion about completed cohomology.

Theorem 3.36. Let π0 := G(R)/G(R)+. The group π0×G(Qp) acts on the E-Banach space

H̃0(Kp,GM) via an admissible continuous representation.
[Eme06b, Theorem 2.2.11]

So far the tame level Kp has been kept fixed. We now describe a way to package all of
the tame levels together, into a single module.

Definition 3.37.

H̃0(GM) := lim−→
Kp

H̃0(Kp,GM).

Here the locally convex inductive limit is taken over the directed set of all compact open
subgroups of G(A∞,p), directed downward by inclusion.

The transition maps here are just the obvious inclusions of functions. After passing to the
inductive limit of all tame levels, we can upgrade our original representation of π0 ×G(Qp)
to a representation of the bigger group:

π0 ×G(A∞) = π0 ×G(Qp)×G(A∞,p).

Thus π0 × G(A∞) can be written as the product G × Γ of a locally Qp-analytic group
G = G(Qp) and a locally compact group Γ = π0 ×G(A∞,p).

Theorem 3.38.

(a) The group π0 ×G(A∞) acts on H̃0(GM) via an admissible continuous representation.
(b) For each compact open subgroup Kp of G(A∞,p), there are natural isomorphisms of ad-

missible continuous π0 ×G(Qp)-representations

H̃0(Kp,GM)
∼−→ H̃0(GM)K

p

.

[Eme06b, Theorem 2.2.16]
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Definition 3.39. If M is the trivial representation of G(Qp) on E, then define:

H̃0 := H̃0(GM).

Theorem 3.40. If M is any finite-dimensional algebraic representation of G defined over
E, then there is a natural isomorphism of admissible continuous π0×G(A∞)-representations:

H̃0(GM)→ H̃0 ⊗E M.

The action of π0 ×G(A∞) = π0 ×G(Qp)×G(A∞,p) on the target is via the diagonal action
of G(Qp) and the action of π0 ×G(A∞,p) on the first factor.
[Eme06b, Theorem 2.2.17]

We want to pass from H̃0 to the subspace “H̃0
la” of locally analytic vectors, so that our

admissible continuous representations upgrade to locally analytic representations. We define
now what it means to have an (essentially) locally analytic representation.

Definition 3.41. Let G be a locally F -analytic group. Let V be a continuous representation
of G on a locally convex E-vector space. A vector v ∈ V is said to be a locally analytic vector
if the orbit map g 7→ gv belongs to Cla(G, V ). Let Vla denote the space of locally analytic
vectors in V . It is stable under the action of G.

Remark 3.42. We would like to give Vla the structure of a locally convex E-vector space
so that the map V 7→ Vla at least preserves the category it is defined on. This is done by
defining Vla as the locally convex inductive limit of some spaces of analytic vectors. Then the
image of the natural map Vla → V is precisely the space of vectors having locally analytic
orbit map as defined above. See [Eme17, Definition 3.5.3] for a careful treatment of this.

Definition 3.43. Let V be a locally convex E-vector space. It is called barrelled if every
closed lattice in V is open.

Definition 3.44. Let G be a locally F -analytic group. Let V be a barrelled Hausdorff
locally convex E-vector space, equipped with a continuous action of G. Then we say that V
is a locally analytic representation of G if the natural map Vla → V is a bijection.
[Eme17, Definition 3.6.9]

Definition 3.45. If G is a locally F -analytic group, and if V is a locally convex E-vector
space of compact type equipped with a locally analytic representation of G, then V is admis-
sible if V ′

b is a coadmissible module with respect to the natural Dla(H,E)b-module structure
on V ′

b for some (and hence every) compact open subgroup H of G.
[Eme17, Definition 6.1.1, Corollary 6.1.22]

IfG is a locally F -analytic group, E is discretely valued, andH is a compact open subgroup
ofG, thenDla(H,E)b is a Fréchet-Stein algebra [Eme17, Corollary 5.3.19]. For these algebras,
there is a notion of coadmissible modules over them, which involve being finitely generated
in some sense together with other nice properties [Eme17, Definition 1.2.8].

Definition 3.46. LetG be a locally F -analytic group, whose centre Z is topologically finitely

generated. (This is so that the character variety Ẑ is representable by a quasi-Stein rigid
analytic space over F .) Let V be a locally convex E-vector space of compact type, equipped
with a locally analytic representation of G. We say that V is an essentially admissible locally
analytic representation of G if the following conditions are satisfied:
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(i) The contragredient Z-action on V ′
b extends to a topological Can(Ẑ, E)-module structure

on V ′
b . (Such an extension is unique, if it exists.)

(ii) The dual V ′
b is a coadmissible module when endowed with its natural module structure

over the nuclear Fréchet algebra Can(Ẑ, E)⊗̂EDla(H,E)b for some (and hence every)
compact open subgroup H of G.

[Eme17, Definition 6.4.9]

Proposition 3.47. Any admissible locally analytic representation of G is an essentially
admissible locally analytic representation of G.
[Eme17, Proposition 6.4.10]

Let G be a locally F -analytic group, and Γ a locally compact group. Then we want to
define the same notions for representations of G × Γ, as before. If V is a Hausdorff locally
convex E-vector space equipped with a topological action of G × Γ, we let Vla denote the
space ofG-locally analytic vectors attached to V . Then Vla comes equipped with a topological
G×Γ-action, uniquely determined by the requirement that the natural continuous injection
Vla → V should be G× Γ-equivariant.

Definition 3.48. A topological action of G×Γ on a Hausdorff locally convex E-vector space
V is a locally analytic representation of G× Γ if V is barrelled, the natural map Vla → V is
a bijection, and the Γ-action on V is strictly smooth.
[Eme17, Definition 7.2.3]

Definition 3.49. Let V be a Hausdorff locally convex E-vector space with a locally ana-
lytic representation of G × Γ. We say that V is an (essentially) admissible locally analytic
representation of G× Γ if for each open compact subgroup H of Γ, the closed subspace V H

in V is an (essentially) admissible locally analytic representation of G.
[Eme17, Definition 7.2.7]

The reason we are defining essentially admissible representations now is because when we
define the locally analytic Jacquet functor in the next section, this will be a natural category
to define it on, since the functor will send this category back into itself. For now, we return
to our discussion about completed cohomology.

Theorem 3.50.

(a) The space H̃0
la is an admissible locally analytic representation of π0 ×G(A∞).

(b) For any compact open subgroup Kp of G(A∞,p), the natural map

H̃0(Kp)la → (H̃0
la)

Kp

is a π0 ×G(Qp)-equivariant isomorphism.

[Eme06b, Theorem 2.2.22]

The following example should hopefully motivate everything that we have done so far.

Example 3.51. Let us calculate H̃0
la for G = GL1 /Q.

Fix a tame levelKp in
∏

q ̸=p Z×
q . Let E be a finite extension of Qp, andM = E be equipped

with the trivial action of the locally Qp-analytic group G(Qp) = Q×
p . Then M0 = OE is a

separated lattice in M . The subgroups Kp,r = 1 + prZp are cofinal in the directed set SM0 .
Therefore, one has:

H̃0(Kp,GM0) := lim←−
s

lim−→
r

H0(Y (Kp,rK
p),GM0/p

s).
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Indeed, the argument H0(. . . ) is just the space of functions F : A× → OE/p
s such that:

(i) F (γg) = F (g) for all γ ∈ Q×.
(ii) F (gk) = F (g) for all k ∈ R>0K

p.
(iii) F (gkp) = F (g) for all kp ∈ Kp,r.

After passing through the inverse limit, we get functions with codomain OE. This is because
OE = lim←−s

OE/p
s where p is the maximal ideal of OE. But pOE = pe for some integer e ≥ 1

and hence {psOE}s≥1 ⊂ {ps}s≥1 forms a cofinal system. So after passing to both the direct
and inverse limits, we get the space of functions F : A× → OE such that:

(i) F (γg) = F (g) for all γ ∈ Q×.
(ii) F (gk) = F (g) for all k ∈ R>0K

p.
(iii) For all s ≥ 1, there exists r ≥ 1, such that for all kp ∈ Kp,r:

F (gkp) ≡ F (g) (mod psOE).

Condition (iii) is just saying that F |Q×
p
is continuous. Let (Ẑ(p))× := Πq ̸=pZ×

q then

H̃0(Kp,GM0) = {F : A× → OE : F satisfies (i), (ii), and (iii)}
= {F : R>0 × ΠqZ×

q → OE : F |Z×
p
is continuous, F |R>0(Ẑ(p))× is R>0K

p-fixed}.

Since the action of G(Qp) on separated lattices in M is trivial, that is, gM0 =M0 for every
separated lattice M0 in M , we obtain a G(Qp)-equivariant isomorphism:

H̃0(Kp,GM) := lim−→
M0

H̃0(Kp,GM0)E = H̃0(Kp,GM0)E

where M0 = OE is the lattice that we previously selected. Therefore, taking the locally
convex inductive limit over all tame levels Kp, one obtains:

H̃0(GM) = {F : R>0 × ΠqZ×
q → OE : F |Z×

p
is continuous, F |R>0(Ẑ(p))× is locally constant}

= C(Z×
p , E)⊗E Csm((Ẑ(p))×, E).

The action of g ∈ G(Qp) on a function F : A× → E in H̃0 := H̃0(GM) is via the formula:

g · F (x) := gF (xg) = F (xg).

The locally analytic vectors in H̃0 are the ones for which the orbit maps g 7→ F (xg) are
locally analytic, that is, belong to Cla(Q×

p , E). However, choosing x = 1, this implies that
the function F |Q×

p
itself must be locally analytic, and hence so must F |Z×

p
. We conclude:

H̃0
la := Cla(Z×

p , E)⊗E Csm((Ẑ(p))×, E).

Remark 3.52. The above example is true more generally. For a general G, one can show

that H̃0 is the space of continuous E-valued functions on G(A) that are locally constant
on G(A∞,p)-cosets and which are invariant under the left-translation action of G(Q). The

functions in the subspace H̃0
la are then just the functions in H̃0 which additionally satisfy

that they are locally analytic on G(Qp)-cosets. See [Eme06b, p. 55] for this discussion.

We wish to also consider the subspace of “locally algebraic vectors” in H̃0. This will be

contained in the subspace of locally analytic vectors H̃0
la. Let us take a brief moment to

introduce the notions of locally algebraic vectors and representations.
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Let G be a connected reductive group over F . Let G be an open subgroup of G(F ). Let
R be the category of finite dimensional algebraic representations of G on E-vector spaces.
Since G is reductive, the category R is semi-simple and abelian.

Definition 3.53. Let V be a representation of G on an E-vector space, and let M denote
an object of R. We say that a vector v ∈ V is locally M-algebraic if there exists an open
subgroup H of G, a natural number n, and an H-equivariant homomorphism Mn → V
whose image contains the vector v. We say that V is a locally M-algebraic representation if
every vector of V is locally M -algebraic.
[Eme17, Definition 4.2.1]

Definition 3.54. Let V be a representation of G on an E-vector space, and let M denote
an object of R. Let VM -lalg be the G-invariant subspace of locally M -algebraic vectors of V .
[Eme17, Proposition-Definition 4.2.2]

Definition 3.55. Let V be a representation of G on an E-vector space.

(a) A vector v ∈ V is locally algebraic if it is locally M -algebraic for some object M of R.
(b) The set Vlalg of all locally algebraic vectors of V forms a G-invariant subspace.
(c) We say that V is a locally algebraic representation of G if Vlalg = V .

[Eme17, Proposition-Definition 4.2.6]

Let Ĝ denote a set of isomorphism class representatives for the irreducible objects of R.
We remark crucially that the objects of Ĝ need not be absolutely irreducible.

Proposition 3.56. Let V be a representation of G on an E-vector space. Then the following
natural map is an isomorphism of G-representations:⊕

M∈Ĝ

VM -lalg → Vlalg.

[Eme17, Corollary 4.2.7]

Proposition 3.57. Let V be an irreducible locally algebraic representation of G. Then there
exists

(i) an element M of Ĝ, for which we set B := EndG(M), and
(ii) an irreducible smooth representation of G on a right B-module U , where irreducibility

is defined with respect to representations over B,

such that V is isomorphic to U⊗BM . Conversely, given such a M and U , the tensor product
U ⊗B M is an irreducible locally algebraic representation of G over E.
[Eme17, Proposition 4.2.8]

Definition 3.58. If V is a locally algebraic representation of G that becomes admissible
as a locally analytic representation when equipped with its finest convex topology, then
we say that V (equipped with its finest convex topology) is an admissible locally algebraic
representation of G. If V is furthermore locally M -algebraic for some M ∈ R, then we say
that V is an admissible locally M -algebraic representation.
[Eme17, Definition 6.3.9]

Definition 3.59. If V is a representation of G×Γ that is locally algebraic as a representation
of G, and that becomes admissible as a locally analytic representation of when equipped with
its finest convex topology, then we say that V (equipped with its finest convex topology) is an
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admissible locally algebraic representation of G× Γ. If V is furthermore locally M -algebraic
for some M ∈ R, then we say that V is an admissible locally M -algebraic representation.
[Eme17, Definition 7.2.15]

Proposition 3.60. Let V be an admissible locally M-algebraic representation of G × Γ
for some object M ∈ R. Let B := EndG(M). Then there exists an admissible smooth
representation of G × Γ on a right B-module U (equipped with its finest convex topology)
such that V is isomorphic to U ⊗B M . The G × Γ-action on the tensor product is induced
by the diagonal action of G, and the action of Γ on the first factor. Conversely, any such
tensor product is an admissible locally M-algebraic representation of G× Γ.
[Eme17, Proposition 7.2.16]

We return to the discussion of completed cohomology. Let G be a connected reductive
group over Q such that G(R) is compact and connected. Let E be a finite extension of Qp

over which G splits; this guarantees that any irreducible representation of G on an E-vector
space is absolutely irreducible. Let M be a finite-dimensional algebraic representation of
G(Qp) on an E-vector space. Let M∨ denote the contragredient representation to M . As
we pass to the inductive limit of open compact subgroups K∞ of G(A∞) shrinking to the
identity, we get the following admissible smooth representation of π0 ×G(A∞):

H0(GM) := lim−→
K∞

H0(Y (K∞),GM).

If M is irreducible, then it is absolutely irreducible, so EndG(M) = E. Let

H0(GM)⊗E M
∨

be equipped with an action of π0 × G(A∞) induced by the diagonal action of G(Qp) and
the action of π0 × G(A∞,p) on the left factor. We have already seen that this is a locally
M∨-algebraic representation. The following result tells us that this is exactly the subspace

of locally M∨-algebraic vectors in H̃0.

Proposition 3.61. The following natural map is an isomorphism:

H0(GM)⊗E M
∨ → H̃0

M∨ -lalg.

[Eme06b, Corollary 2.2.25]

Factoring locally algebraic representations into a tensor product of a smooth representation
with an algebraic representation is an useful description to have in hand. Later when we
define the locally analytic Jacquet functor, we will see that it acts on locally algebraic
representations via the smooth Jacquet functor on the smooth factor, and picking out the
highest weight vector on the algebraic representation.

In the above setup, there is a natural π0 ×G(A∞)-equivariant map:

H0(GM)⊗E M
∨ → H̃0

M∨ -lalg ⊂ H̃0.

induced by the inclusion of H̃0
M∨ -lalg into H̃0.

Lemma 3.62. This is equivalent to giving a π0 ×G(A∞)-equivariant map:

H0(GM)→ (M ⊗E H̃
0)sm.
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Proof. Let G× Γ := π0 ×G(A∞). By tensor-hom adjunction,

HomG×Γ(H
0(GM)⊗E M

∨, (M ⊗E H̃
0)sm ⊗E M

∨)

= HomG×Γ(H
0(GM),Hom(M∨, (M ⊗E H̃

0)sm ⊗E M
∨))

= HomG×Γ(H
0(GM),Hom(M∨, (M ⊗E H̃

0)sm ⊗E M
∨)sm)

= HomG×Γ(H
0(GM), (M ⊗E H̃

0)sm).

The second equality is becauseH0(GM) is smooth, and hence has image in the smooth vectors

of the target. Since (M⊗E H̃
0)sm is smooth by definition, the third equality is a consequence

of the following calculation done just before [Eme17, Proposition 4.2.4]:

Hom(M∨, (M ⊗E H̃
0)sm ⊗E M

∨)sm = (M ⊗E H̃
0)sm.

Therefore, giving the latter map is equivalent to giving a map:

H0(GM)⊗E M
∨ → (M ⊗E H̃

0)sm ⊗E M
∨.

However, by [Eme17, Proposition 4.2.4], there is an isomorphism:

(M ⊗E H̃
0)sm ⊗E M

∨ ∼−→ H̃0
M∨ -lalg.

This completes the proof. □

Let g denote the Lie algebra of G := G(Qp). The functors (−)sm and ((−)la)g induce the
same subspaces on G-representations [Eme17, Corollary 4.1.6]. More generally, one can show
that their derived functors are naturally isomorphic [Eme06b, Theorem 1.1.13]. Thus

H0(GM)→ (M ⊗E H̃
0)sm = ((M ⊗E H̃

0)la)
g

∼−→ (M ⊗E H̃
0
la)

g ([Eme17, Proposition 3.6.15])

= Homg(M
∨, H̃0

la).

Therefore, it is equivalent to give either one of the following maps:

(i) H0(GM)⊗E M
∨ → H̃0.

(ii) H0(GM)→ Homg(M
∨, H̃0

la).

In fact, map (ii) is an isomorphism, and this follows from its origins as the edge map of
a spectral sequence, which we shall see below. Note that map (ii) identifies cohomology

of a local system with some maps into H̃0
la. This is analogous to the same identification

for classical automorphic forms, with H̃0
la replaced by A(. . . ). In light of this analogy, it is

sensible to call the π0 ×G(A∞)-representation H̃0
la the space of p-adic automorphic forms.

Proposition 3.63. The locally algebraic irreducible closed π0 × G(A∞)-subrepresentations

of H̃0, equivalently just the irreducible closed π0 × G(A∞)-subrepresentations of H̃0
lalg, are

precisely the “weight-transferred-to-p” classical automorphic representations.
[Eme06b, Proposition 3.2.4]

The precise meaning of “weight-transferred-to-p” is given in [Eme06b, Definition 3.1.5].
He calls them classical p-adic automorphic representations.
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Example 3.64. Let us calculate H̃0
lalg for G = GL1 /Q. Let Γ := {±1} × (A∞,p)×.

Let E be any finite extension of Qp. Clearly, G splits over E. Recall that the irreducible
finite-dimensional algebraic representations of G := G(Qp) on E-vector spaces are precisely
the one-dimensional representations given by characters χk : Q×

p → E× for some integer k

such that χk(x) = xk. Fix some integer k, and consider H̃0
χk -lalg. If we understand these

spaces, then recall we understand H̃0
lalg, since:

H̃0
lalg =

⊕
k∈Z

H̃0
χk -lalg.

One of our calculations earlier showed that there is an isomorphism of G×Γ-representations:

H0(Gχk
)⊗E χk

∼−→ H̃0
χk -lalg.

The space H0(Gχk
) is a direct sum of one-dimensional G × Γ-subrepresentations, since it is

the inductive limit of finite-dimensional representations on which the action of G×Γ factors
through a finite abelian quotient. In particular, one has:

H0(Gχk
) =

⊕
η

Eη

where η varies over characters η : A× → E× such that η is trivial on Q×R>0KpK
p for some

open compact subgroup KpK
p of (A∞)×. Therefore, putting everything together:

H̃0
lalg =

⊕
k

H̃0
χk -lalg =

⊕
k

⊕
η

Eηχk.

This is precisely the span of the algebraic p-adic Hecke characters previously defined.

Finally, we return to the task of showing that the following map is an isomorphism:

H0(GM)→ Homg(M
∨, H̃0

la).

This is a consequence of the following theorem, from which the map comes from.

Theorem 3.65. For all n ≥ 0, there is a π0 ×G(A∞)-equivariant map

Hn(GM)→ Homg(M
∨, H̃n

la)

which is the edge map of a π0 ×G(A∞)-equivariant spectral sequence

Ei,j
2 = Extig(M

∨, H̃j
la)⇒ H i+j(GM).

[Eme06b, Corollary 2.2.18]
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Since G(R) is compact, H̃j = 0 for j ̸= 0, so Ei,j
2 = 0 unless j = 0. So only the middle row

of the following illustration of the second page of the spectral sequence is possibly non-zero.

...
...

...
...

...

. . . E−2,1
2 E−1,1

2 E0,1
2 E1,1

2 E2,1
2 . . .

. . . E−2,0
2 E−1,0

2 E0,0
2 E1,0

2 E2,0
2 . . .

. . . E−2,−1
2 E−1,−1

2 E0,−1
2 E1,−1

2 E2,−1
2 . . .

...
...

...
...

...

By the direction of the differentials, the spectral sequence has already converged everywhere

on the second page, so choosing i = j = 0, we see that Homg(M
∨, H̃0

la) is one of the graded

pieces of H0(GM). For n ≥ 0, the graded pieces of Hn(GM) are Ei,j
2 such that i + j = n.

Since we have a first quadrant spectral sequence, i+ j = 0 implies i = j = 0. Therefore, we

have found that H0(GM) = Homg(M
∨, H̃0

la). This is it.

4. Emerton’s Jacquet functor

Let F be a non-archimedean locally compact field. Let G be a reductive algebraic group
defined over F . Let S be a maximal F -split torus in G, and let ΦF := Φ(G, S) be the set
of roots of G relative to F . This is a subset of X(S) ⊗ R where X(S) := Hom(S,Gm) is
the group of algebraic characters of S. Together, (ΦF , X(S)⊗R) defines a root system of G
relative to F defined by the maximal F -split torus S.
Choose a set of positive roots Φ+

F ⊂ ΦF , which determines a unique minimal parabolic
subgroup P containing S. We have that P = MN is a Levi decomposition for P . Let
∆F ⊂ Φ+

F be a set of simple roots for this ordering. If Θ ⊂ ∆F , let SΘ =
⋂

α∈Θ ker(α).
The standard parabolic F -subgroup defined by Θ is then the subgroup PΘ generated by the
centralizer C(SΘ) of SΘ and N . This can alternatively be written as the semidirect product
PΘ = C(SΘ)NΘ where NΘ = Ru(PΘ) has Lie algebra

∑
gα where α runs over roots in Φ+

F

that are not linear combinations of roots in Θ. In this notation, P = P∅. See discussion in
[Cas95, §1] and [Bor66, §6.5] for more details.

Theorem 4.1. Every parabolic F -subgroup of G is conjugate over F to one and only one
standard parabolic F -subgroup.
[Bor66, §6]

Remark 4.2. It should not be surprising that we are only considering the root system
and ignoring the coroot system, because parabolic subgroups of G are determined by the
parabolic subgroups of Gder. For example, consider the maps

Gder → G→ G/Z(G).
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Since parabolic subgroups contain the center, the second map induces a bijection on parabolic
subgroups of G and G/Z(G). The composition of the two maps is a central isogeny, which
identifies the root systems in Gder and G/Z(G) and hence also their parabolic subgroups.
For more details, see [Bor91, Theorem 22.6].

We now restrict to the F -points of our constructions above. So let G = G(F ) and write
S = S∅ and P = P∅ for the F -points of S = S∅ and P = P∅, respectively.

Definition 4.3. For Θ ⊂ ∆ and ε ∈ (0, 1], define:

S−
Θ(ε) := {s ∈ SΘ : |α(s)| ≤ ε for all α ∈ ∆ \Θ}.

[Cas95, §1.4]

We simply write S−
Θ = S−

Θ(1). If P is any parabolic subgroup of G, choose g ∈ G so that
gPg−1 = PΘ for some Θ ⊂ ∆ and define S−(ε) := g−1S−

Θ(ε)g. Let S
− := S−(1).

Example 4.4. Let G = GLn /Qp and G = GLn(Qp). We fix S to be the diagonal torus and
P to be the Borel subgroup of upper triangular matrices. Then one has:

S− = {diag(s1, . . . , sn) ∈ GLn(Qp) : |s1| ≤ · · · ≤ |sn|} .
Let N be any locally compact group such that open compact subgroups form a basis of

neighbourhoods about the identity, and possessing arbitrarily large open compact subgroups
as well. This means that if X is a compact subset of N , then there is an open compact
subgroup N0 of N so that X ⊂ N0. This condition is satisfied, for example, when N is the
F -points of a unipotent group defined over F .

Definition 4.5. Let (π, V ) be a smooth representation of N . For an open compact subgroup
N0 of N , define:

V (N0) :=

{
v ∈ V :

∫
N0

π(n)v dn = 0

}
.

Definition 4.6. Let (π, V ) be a smooth representation of N . Define:

V (N) :=
⋃
N0

V (N0)

where N0 runs over all open compact subgroups N0 of N . By our assumption that N
possesses arbitrarily large open compact subgroups, this is a subspace of V .

Proposition 4.7. V (N) = span{π(n)v − v : n ∈ N, v ∈ V }.
[Cas95, Proposition 3.2.1]

Let P be any proper parabolic subgroup of G, and P = MN be a Levi decomposition.
Let (π, V ) be a complex admissible representation of G. Define:

VN := V/V (N).

The restricted action of P on VN is trivial on N , so VN admits a natural action of the Levi
factor M = P/N . Let (πN , VN) denote this representation of M called the Jacquet module
of (π, V ). The (smooth) Jacquet functor

JP : {smooth G-representations} → {smooth M -representations}
(π, V ) 7→ (πN , VN)

is exact and admissible, but admissibility is non-trivial to show. It is a consequence of the
following more precise statement.
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Theorem 4.8. Let (π, V ) be an admissible representation of G, K0 a compact open subgroup
of G with Iwahori decomposition K0 = N−

0 M0N0 = N0M0N
−
0 with respect to P . Then the

canonical projection V K0 → V M0
N is surjective.

[Cas95, Theorem 3.3.3]

This proves admissibility because there is a neighbourhood basis of open compact sub-
groups {Kn}n≥0 of G each of which admits an Iwahori decomposition Kn = NnMnN

−
n with

respect to the Levi decomposition P = MN [Cas95, Proposition 1.4.4]. Since M ⊂ G has
the subspace topology, {Mn =M ∩Kn}n≥0 is a neighbourhood basis of M . This proves the
admissibility of VN from the admissibility of V .

Fix a parabolic subgroup P of G with P =MN . Let S denote the maximal F -split torus
inside P . Let S− be the subset of toral elements corresponding to these choices.

Definition 4.9. For a smooth representation (π, V ) of G, and K open compact in G, define:

PK(v) :=
1

meas(K)

∫
K

π(k)v dk.

The smoothness of π ensures that this is a finite sum, and hence makes sense. The operator
PK is the projection of V onto V K so that V = V K ⊕ V (K).
[Cas95, p. 20]

Definition 4.10. For each open compact subgroupK of G. LetH(G,K) be the vector space
of compactly supported K-biinvariant complex-valued functions on G. It has an algebra
structure with respect to a natural convolution, and we call it the Hecke algebra of G with
respect to (or relative to) K. Define the Hecke algebra of G to be H(G) :=

⋃
K H(G,K)

where the union is taken over all open compact subgroupsK of G. It has an algebra structure
induced from the algebra structures ofH(G,K) for allK. If (π, V ) is a smooth representation
of G, then V becomes an H(G)-module via the formula:

π(f)v :=

∫
G

f(g)π(g)v dg.

This degenerates into a finite sum, because π is smooth. Moreover, there is an action of
H(G,K) on V K via the same formula, which is commonly used.

Definition 4.11. Let (π, V ) be a smooth representation of G. Let K be an open compact
subgroup of G. For any g ∈ G, let [KgK] denote the indicator function of KgK in H(G,K)
and let [KgK] act on V (or V K) via the Hecke algebra action.

Lemma 4.12. Let (π, V ) be a smooth representation of G. Let K0 be an open compact
subgroup of G admitting an Iwahori decomposition with respect to P = MN . Then for
s1, s2 ∈ S−, one has [K0s1K0][K0s2K0] = [K0s1s2K0]. This turns

{[K0sK0] : s ∈ S−}

into an abelian submonoid of H(G,K0) isomorphic to S−.
[Cas95, Lemma 4.1.5]

Lemma 4.13. Let g ∈ G. Let K be a compact open subgroup of G. Then the natural map
K → KgK sending k 7→ kg induces an isomorphism of right coset spaces

K/(K ∩ gKg−1)→ KgK/K.
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Lemma 4.14. Let (π, V ) be a smooth representation of G. Let K be an open compact
subgroup of G. Then for g ∈ G and v ∈ V K, one has:

PK(π(g)v) =
meas(K ∩ gKg−1)

meas(K)2
[KgK]v.

Proof. It is a simple calculation.

PK(π(g)v) =
1

meas(K)

∫
K

π(k)π(g)v dk

=
meas(K ∩ gKg−1)

meas(K)

∫
K/(K∩gKg−1)

π(k)π(g)v dk

=
meas(K ∩ gKg−1)

meas(K)

∫
KgK/K

π(h)v dh (Lemma 4.13)

=
meas(K ∩ gKg−1)

meas(K)2

∫
KgK

π(h)v dh

=
meas(K ∩ gKg−1)

meas(K)2
[KgK]v. □

Lemma 4.15. Let δP : P → C× denote the modulus character of P . Let K0 be an open
compact subgroup of G admitting an Iwahori decomposition with respect to P =MN . Then
for any s ∈ S−, one has:

[K0sK0 : K0] = [K0 : K0 ∩ sK0s
−1] = δ−1

P (s).

[Cas95, Lemma 1.5.1]

Remark 4.16. Let (π, V ) be a smooth representation of G. The significance of the previous
two lemmas is that if we normalize the Haar measure on G so that meas(K0) = 1, then for
s ∈ S− and v ∈ V K0 , the integral formula:

s · v := PK0(π(s)v)

defines an action of the abelian monoid S− on V .

Let (π, V ) be a smooth admissible representation of G. Let K0 be an open compact
subgroup of G with Iwahori decomposition K0 = N0M0N

−
0 with respect to P = MN .

Assume the Haar measure on G is chosen so that meas(K0) = 1. For each s ∈ S−, denote:

V K0
s := PK0(π(s)V

K0) = [K0sK0]V
K0 .

Fix N1 an open compact subgroup of N such that V K0 ∩ V (N) ⊂ V (N1). This is possible
because V K0 is finite-dimensional (by admissibility) and V (N) =

⋃
N0
V (N0).

Proposition 4.17. For s ∈ S−, the natural projection V K0
s → V M0

N is a surjection. If
sN1s

−1 ⊂ N0, then V
K0
s ∩ V (N) = 0 so that the map is a bijection.

[Cas95, Proposition 4.1.4]

Remark 4.18. There always exists some s ∈ S− such that sN1s
−1 ⊂ N0. This is discussed

in the paragraph just before [Eme06a, Proposition 4.3.4].

Proposition 4.19. For s ∈ S− such that sN1s
−1 ⊂ N0, the spaces V K0

s are identical.
[Cas95, Proposition 4.1.6]
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In this case, denote this space by V K0

S− . This is the finite-slope subspace of V K0 for the
operators [K0sK0] for s ∈ S−. It is the maximal subspace of V K0 for which one of, equiv-
alently all of, these operators act invertibly. By the above result, there is an isomorphism
V K0

S−
∼−→ V M0

N . The inverse map V M0
N → V K0

S− is called the canonical lifting.

Theorem 4.20. Let s ∈ S− be any element. Then the action of [K0sK0] on V
K0

S− is invertible.
[Cas95, Lemma 4.1.7]

The next result tells us that the monoidal action of S− on V K0 via Hecke operators agrees,
up to a constant, with the toral action of M on the Jacquet module VN .

Lemma 4.21. If v ∈ V K0 has image u ∈ VN , then for any s ∈ S−, the image of PK0(π(s)v)
under the Jacquet functor is equal to πN(s)u.
[Cas95, Lemma 4.1.1]

Remark 4.22. Recall it is “up to a constant” because the Hecke operators [K0sK0]v only
agree with PK0(π(s)v) up to a constant. If we want the action of S− on V K0 to match up
exactly with its action on VN , then we ought to define it with PK0(π(s)v). This is exactly
what we will do in the context of the soon-to-be-seen locally analytic Jacquet modules.

The next example should hopefully motivate our constructions.

Example 4.23. Let (π, V ) be an admissible smooth representation of G = GL2(Qp). Let
P =MN be the Levi decomposition of the standard upper triangular Borel. Let

Kn =

(
1 + pnZp Zp

pnZp 1 + pnZp

)
be a family of open compact neighbourhoods shrinking down to

N0 =

(
1 Zp

1

)
.

Each Kn has an Iwahori decomposition Kn = N0MnN
−
n = N−

n MnN0 where

Mn =

(
1 + pnZp

1 + pnZp

)
and N−

n =

(
1

pnZp 1

)
.

Moreover, N is the union of its open compact subgroups of the form:

Nn =

(
1 pnZp

1

)
.

In this case, S− is the set of diagonal elements with non-decreasing valuations going down.
The element sp := ( p

1 ) is classically associated to the Up = [N0spN0] operator. We wish to
show that our above discussion produces:

(i) the finite-slope subspace V N0
fs ⊂ V N0 corresponding to Up, and

(ii) an isomorphism V N0
fs

∼−→ VN with the smooth Jacquet module.

For each Kn, there exists r ≥ 1 such that:

(i) V Kn ∩ V (N) ⊂ V (N−r), and
(ii) srpN−rs

−r
p ⊂ N0.
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This lets us define V Kn

S− := [Kns
r
pKn]V

Kn . Let V Kn
fs :=

⊕
λ ̸=0Eλ be the direct sum of

generalized λ-eigenspaces of [KnspKn] for λ ̸= 0. This is the maximal subspace of V Kn on
which [KnspKn] acts invertibly. The general theory that we have developed above tells us
that [KnspKn] acts invertibly on V Kn

S− so that in particular V Kn

S− ⊂ V Kn
fs . We will now show

that V Kn

S− = V Kn
fs so that our use of the term finite-slope subspace for V Kn

S− is justified.

Lemma 4.24. V Kn

S− = V Kn
fs .

Proof. Let v ∈ V Kn
fs . Then setting J to be the inverse of [KnspKn] on V

Kn
fs one gets:

v = [KnspKn]
r(Jrv) = [Kns

r
pKn](J

rv) ∈ V Kn

S− . □

Suppose now v ∈ V N0 . Since V is a smooth representation of G, the stabilizer of v is open
and contains N0, and hence contains an open compact subgroup Kn for some n, because:

N0 =
⋂
n≥1

Kn.

This is equivalent to the statement that:⋃
n≥1

V Kn = V N0 .

Let v ∈ V N0 , then v ∈ V Kn for some n. By Jacquet’s First Lemma [Cas95, Theorem 3.3.4],
the action of [N0spN0] on v ∈ V N0 agrees with the action of [KnspKn] on v ∈ V Kn , albeit
only up to a constant. Nevertheless, this implies that Up = [N0spN0] stabilizes V

Kn , and in

particular Up is a locally finite operator. Let V N0
fs denote the maximal subspace of V N0 on

which Up acts invertibly. This is the same as the subspace of vectors v ∈ V N0 such that Up

becomes invertible when restricted to the subspace:

span{v, Upv, U
2
p v, . . . }.

Then it is clear by our discussion that:

V N0
fs =

⋃
n≥1

V Kn

S− =
⋃
n≥1

V Kn
fs .

Finally, we obtain a natural map:

V N0
fs =

⋃
n≥1

V Kn

S− →
⋃
n≥1

V Mn
N = VN .

It is clearly surjective. Moreover, the restriction of this map to each V Kn

S− is an isomorphism,
implying that this map is injective. Therefore, it is an isomorphism. This is the connection,
as we shall see, between the smooth Jacquet module, and the somewhat different definition
involved in Emerton’s locally analytic Jacquet module.

We now want to define a locally analytic version of the Jacquet functor. Before we do
this, let us just make a quick remark about the finite-slope subspace, which we have defined
to be the maximal subspace on which some operator (typically Up) is invertible.
Let V be a finite-dimensional complex vector space equipped with the action of a linear

operator T , so that in particular V is a C[T ]-module. We can write:

Vfs := HomC[T ](C[T, T−1], V ).

Then Vfs has a C[T, T−1]-module structure via (left or right) translation on the domain.
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Remark 4.25. For Φ ∈ Vfs, the image of Φ is a T -invariant subspace of V on which T acts
invertibly, and this subspace is spanned by the vectors {T kΦ(1) : k ∈ Z}.
For Φ ∈ Vfs, evaluating at the identity, that is Φ 7→ Φ(1), induces a natural C[T ]-module

homomorphism Vfs → V that is an isomorphism onto its image:

Vfs
∼−→

⊕
λ ̸=0

Eλ ⊂ V.

Here Eλ denotes the generalized eigenspace of λ where λ is a root of the characteristic
polynomial of T . This direct sum is the maximal subspace on which T acts invertibly, and
although we had previously denoted this space “Vfs”, this isomorphism hopefully justifies
our current abuse of notation. Since T acts invertibly on both sides, the C[T ]-module
isomorphism upgrades to a C[T, T−1]-module isomorphism for free.

Some categorical properties of this construction include [Eme06a, §3.2]:
(a) The functor HomC[T ](C[T, T−1],−) is right adjoint to the forgetful functor from the

category of C[T, T−1]-modules to the category of C[T ]-modules.
(b) The natural structure map Vfs → V realizes Vfs as the final object in the category of

C[T, T−1]-modules equipped with a C[T ]-linear map to V .

We use this perspective of finite slope to define Emerton’s locally analytic Jacquet functor.
To set things up, we need a few more definitions from locally analytic representation theory.
Let F be a finite extension of Qp, and E be an extension of F , complete with respect to a
discrete valuation extending the discrete valuation of F .

Definition 4.26. If G is a topological group (or semigroup), let Reptop.c(G) denote the
category of Hausdorff locally convex E-vector spaces of compact type, equipped with a
topological action of G, and whose morphisms are continuous G-equivariant E-linear maps.
[Eme06a, §3.1]

Definition 4.27. IfG is a locally F -analytic group, let Repla.c(G) denote the full subcategory
of Reptop.c(G) consisting of locally analytic representations of G on locally convex E-vector
spaces of compact type.
[Eme06a, §3.1]

Definition 4.28. Let G be a locally F -analytic group, and suppose the centre ZG of G is
topologically finitely generated. Let Repes(G) be the full subcategory of Repla.c(G) consisting
of essentially admissible locally analytic representations of G. Let Repad(G) be the full
subcategory of Repes(G) consisting of admissible locally analytic representations of G.
[Eme06a, §3.1]

Definition 4.29. Let G be a locally F -analytic group. Let Repz
la.c(G) be the full subcategory

of Repla.c(G) consisting of locally convex E-vector spaces V of compact type, equipped with
a locally analytic representation of G, and such that V may be written as the union of an
increasing sequence of ZG-invariant BH-subspaces.
[Eme06a, §3.1]

This last condition about V being written as the union of some increasing sequence of
ZG-invariant BH-subspaces can be reinterpreted as follows.

Proposition 4.30. Let V be a locally convex E-vector space of compact type, equipped with
a topological action of the topologically finitely generated abelian locally F -analytic group Z.
The following conditions are equivalent:
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(i) The Z-action on V extends to a Can(Ẑ, E)-module structure for which the multiplication

map Can(Ẑ, E)× V → V is separately continuous.

(ii) The contragredient Z-action on V ′
b extends to a topological Can(Ẑ, E).

(iii) The Z-action on V is locally analytic, and we may write V as a union of an increasing
sequence of BH-subspaces, each invariant under Z.

[Eme17, Proposition 6.4.7]

Fix a topologically finitely-generated abelian locally F -analytic group Z. We also fix a
topological submonoid Z+ of Z such that Z+ generates Z as a group, and contains a compact
open subgroup of Z. There is an obvious forgetful functor Repz

la.c(Z) → Reptop.c(Z
+). We

will define a right adjoint to this functor by taking “finite slope”.

Definition 4.31. For any object V of Reptop.c(Z
+), we write:

Vfs := Lb,Z+(Can(Ẑ, E), V ).

(Lb,Z+(. . . ) is the subspace of Lb(. . . ) consisting of Z+-equivariant maps.)
[Eme06a, Definition 3.2.1]

Remark 4.32. Recall that if V andW are two locally convex E-vector spaces, then L(V,W )
denotes the E-vector space of continuous E-linear maps from V toW , and Lb(V,W ) denotes
the underlying space L(V,W ) equipped with its strong topology; see [ST04, §7] for details.

Remark 4.33. Evaluation at a point induces a natural inclusion of Z into the group of

units of Can(Ẑ, E). This gives a Z-module structure on Can(Ẑ, E), and hence also Vfs via
translation in the domain. (One needs to check that this sends Lb,Z+(. . . ) into itself.)

The space Can(Ẑ, E) is our replacement in the locally analytic setting for the perhaps

more intuitive object E[Z]. There is a natural map of E-algebras E[Z]→ Can(Ẑ, E) induced
by z 7→ δz where δz is the evaluation at z map. This embedding has dense image; this is
mentioned in the proof of [Eme17, Lemma 6.4.8].

Example 4.34. Let Z+ = N and Z = Z. Since Z has the discrete topology, it is in fact a
locally F -analytic group, of dimension zero! Since any character of Z is determined entirely

by the image of 1 ∈ Z, one has Ẑ = Gm/F in the notation of [Eme17, Proposition 6.4.5].

Let ẐE denote the base change of Ẑ to E. Then

Can(Ẑ, E) := OẐE
(ẐE)

∼−→ E{{x, x−1}}.

Here the element x corresponds to the natural inclusion Gm,E ↪→ A1
E in Hom(Gm,E,A1

E)

and can be interpreted as the element in Can(Ẑ, E) which sends any character in Ẑ to its

evaluation at 1 ∈ Z. Therefore, the map E[Z] → Can(Ẑ, E) has dense image E[x, x−1].

Similarly, the map E[Z+]→ Can(Ẑ, E) has image E[x].

Remark 4.35. In [Eme17, Definition 2.1.9], he defines Can(X, E) to be the E-Banach algebra
of E-valued rigid analytic functions defined on X, where X is any affinoid rigid analytic space
defined over F . He does not mean the space of functions “X → E”, since the domain and
codomain are not even in the same category. He probably means for Can(X, E) to denote
Hom(XE,A1

E) = O(XE) where XE = X ⊗F E, and A1
E is the rigid affine line over E. This

would make sense because O(XE) is indeed an E-Banach space.
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The following lemma provides an easy description for the strong dual of Vfs.

Lemma 4.36. If V is an object of Reptop.c(Z
+), then there is a natural isomorphism:

(Vfs)
′
b = Can(Ẑ, E) ⊗̂E[Z+] V

′
b .

[Eme06a, Lemma 3.2.3]

We are almost ready to define the locally analytic Jacquet functor. Before doing so, we
need to introduce an analogue of the Hecke algebra action in this setting. Fix a connected
reductive group G defined over F , a parabolic subgroup P of G, and write P = MN for
its Levi decomposition. Write G := G(F ), P := P(F ), M := M(F ), and N := N(F ).
Let ZG (respectively ZM) denote the centre of G (respectively M), and write ZG := ZG(F )
(respectively ZM := ZM(F )), then ZG (respectively ZM) is the centre of G (respectively M).
Let n denote the Lie algebra of N . Let V be a locally analytic representation of P , and let

V n denote the closed subspace of n-invariants of V . The subspace V n is P -invariant, since
n is invariant under the adjoint action of P . Note that when regarded as a locally analytic
representation of N , the subspace V n is precisely the subspace of smooth vectors of V , since
recall that (−)sm = (−)n, and so there is a smooth N -action on V n.

Definition 4.37. Let (π, V ) be a locally analytic representation of P . If N0 is any open
compact subgroup of N , define the projection operator PN0 : V

n → V N0 as follows:

PN0(v) :=

∫
N0

π(n)v dn.

(The measure dn is the Haar measure on N , normalized so that N0 has measure one.)
[Eme06a, Definition 3.4.1]

Fix a compact open subgroup P0 of P , and write M0 := M ∩ P0, N0 := N ∩ P0, M
+ :=

{m ∈M : mN0m
−1 ⊂ N0}, and Z+

M :=M+ ∩ ZM . Note M0 ⊂M+ and ZG ⊂ Z+
M .

Proposition 4.38. The abelian group ZM is generated by its submonoid Z+
M .

[Eme06a, Corollary 3.3.3]

Example 4.39. Let G := GL2 /Qp. Let P = MN be the Levi decomposition of the Borel
upper triangular matrices in G into the diagonal torus and its unipotent radical. Let

P0 :=
(

Z×
p Zp

Z×
p

)
be a compact open subgroup of P := P(Qp). Recall M =

(
Q×

p

Q×
p

)
. Then

M0 :=
(

Z×
p

Z×
p

)
N0 :=

(
1 Zp

1

)
M+ := {

(
t1

t2

)
∈ GL2(Qp) : |t1| ≤ |t2|}

So M+ is exactly the monoid S− defined earlier!

Definition 4.40. If m ∈M+, define PN0,m : V n → V N0 as follows:

PN0,m(v) := PN0(mv).

[Eme06a, Definition 3.4.2]
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For m ∈M+, note that the restriction of PN0,m to V N0 induces an endomorphism of V N0 .

Lemma 4.41. If m ∈M+, then the endomorphism PN0,m of V N0 is continuous.
[Eme06a, Lemma 3.4.3]

Lemma 4.42. If m,m′ ∈M+, then PN0,mPN0,m′ = PN0,mm′.
[Eme06a, Lemma 3.4.4]

So the operators PN0,m define a topological action of the monoidM+ on V N0 . In particular,
we obtain a topological action of Z+

M on V N0 . Suppose now that V is of compact type, so
that V is an object in the category Repla.c(P ). Then the closed subspace V N0 of V is also of
compact type, and is equipped with a topological action of Z+

M . Thus it is an object in the
category Reptop.c(Z

+
M). We can take its finite slope part.

Definition 4.43. If V is an object of Repla.c(P ), we can view V N0 as an object of Reptop.c(Z
+
M),

and then define JP (V ) := (V N0)fs.
[Eme06a, Definition 3.4.5]

By [Eme06a, Proposition 3.2.4], this functor outputs an object in Repz
la.c(ZM).

Proposition 4.44. If V is an object of Repla.c(P ), then the locally analytic ZM -representation
on JP (V ) extends in a natural way to a locally analytic M-representation.
[Eme06a, Proposition 3.4.6]

Thus JP defines a functor Repla.c(P ) → Repz
la.c(M). In [Eme06a, §3.5], this will be

classified as an adjoint functor to some functor. Since there is a natural forgetful functor
from Repla.c(G) to Repla.c(P ) by restricting the group action, we also obtain a functor:

JP : Repla.c(G)→ Repz
la.c(M).

Recall that Repes(G) is a full subcategory of Repla.c(G).

Theorem 4.45. If V is an object of Repes(G), then the Jacquet module JP (V ) is an object
of Repes(M). Thus JP induces a functor:

JP : Repes(G)→ Repes(M).

[Eme06a, Theorem 4.2.32]

Let V be an admissible smooth representation of G defined over E. If we equip V with its
finest convex topology, then it becomes an object of Repad(G). One can show that JP (V )
is isomorphic as an M -representation to the N -coinvariants VN of V . Indeed, this is just
saying that the locally analytic Jacquet functor JP , when restricted to admissible smooth
representations, recovers the classical smooth Jacquet functor.

Proposition 4.46. (a) The natural quotient map V → VN induces an M+-equivariant sur-
jective map V N0 → VN (the M+-action is defined on the source via operators PN0,m, and
on the target via restricting the natural M-action).

(b) The M+-equivariant map V N0 → VN , after passing to the finite slope part on the source,

restricts to an M-equivariant isomorphism JP (V )
∼−→ VN .

[Eme06a, Proposition 4.3.4]

There is an easy description of JP when applied to locally algebraic representations.
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Proposition 4.47. Let W be a finite-dimensional algebraic representation of G, and let
B = EndG(W ). If U is an admissible smooth representation of G over B, then there is a
natural M-equivariant isomorphism:

JP (U ⊗B W )
∼−→ UN ⊗B W

N .

[Eme06a, Proposition 4.3.6]

Recall that a locally analytic representation V of G is said to be an admissible locally
algebraic representation of G if it, when endowed with its finest convex topology, becomes
an admissible locally analytic representation of G. We will always regard an admissible
locally algebraic representation of G as being an object of Repad(G), by endowing it with
its finest convex topology. By [Eme17, Proposition 6.3.11], any admissible locally algebraic
representation V of G admits an isomorphism:

V
∼−→

⊕
n

Un ⊗Bn Wn

where Wn runs over a sequence of isomorphism class representatives for the irreducible
algebraic finite-dimensional representations of G, Bn := EndG(Wn), and Un is an admissible
smooth representation of G over Bn. Then the additivity of JP [Eme06a, Lemma 3.4.7]
together with Proposition 4.47 tell us that:

JP (V )
∼−→

⊕
n

(Un)N ⊗Bn W
N
n .

The final property of the locally analytic Jacquet functor JP that we want to discuss in
this section is: when does it commute with the functor of taking locally algebraic vectors?
As we shall see in the next section, the answer to this question gives rise to a version of
“small slope implies classical” in the locally analytic setting. The idea behind what we want
to do is as follows. Let V be an essentially admissible locally analytic representation of G.
Let W be an irreducible finite-dimensional algebraic representation of G. The natural closed
embedding VW -lalg → V induces a closed embedding of M -representations:

JP (VW -lalg)→ JP (V ).

If χ is a character of ZM , then this restricts to an embedding on χ-eigenspaces:

(VW -lalg)
N0,Z

+
M=χ = (VW -lalg)

N0,ZM=χ
fs =: JP (VW -lalg)

χ → JP (V )χ.

The left hand side is the space of classical (locally W -algebraic) eigenforms for which the
Up-operator (the monoid Z+

M) acts via a finite-slope eigenvalue (an invertible character χ).
The right hand side is the a priori bigger space of p-adic (locally analytic) eigenforms, which
interpolate between the classical eigenforms, and for which the Up-operator (the group ZM)
acts by the same eigenvalue (character). If we are given a p-adic eigenform, and are told
that Up acts on it via some finite-slope eigenvalue, can we deduce whether it is classical, by
which we mean it lies in the image of the above embedding?

To lie in the classical subspace, there is an easy necessary condition that must be satisfied.
Observe that the above embedding factors through an algebraic subspace in the codomain:

JP (VW -lalg)
χ → JP (V )χ

WN -lalg
.

Let ψ denote the character through which ZM acts on WN . (Such a ψ exists if we assume
G to be split over the field E over which W is defined.) Note that ψ is basically the highest
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weight of W . If χ and ψ do not coincide locally, and so in particular if χ is not locally
algebraic, then both the domain and codomain vanish.

There is also a sufficient condition. Suppose χ and ψ coincide locally. If V admits a
G-invariant norm, and if χ is of “non-critical slope” (to be defined) with respect to the
irreducible representation WN , then the previous map is an isomorphism. (For this, we will
need to assume that F = Qp, so that G is locally Qp-analytic, and that G splits over E.)
To this end, let us be more precise about what we mean. Let χ be an E-valued locally

F -analytic character of ZM , that is χ ∈ ẐM(E), and V be an object of Repla.c(P ). Write:

V N0,Z
+
M=χ := {v ∈ V N0 : πN0,zv = χ(z)v for all z ∈ Z+

M}.
We regard this as a locally analytic representation of ZM , by having ZM act via χ. Recall
we can view V N0 as an object in Reptop.c(Z

+
M) so that V N0 , and hence its χ-eigenspace as a

closed subspace, is of compact type as well. Furthermore, since ZM acts on this χ-eigenspace
through a scalar, we have certainly defined an object in Repz

la.c(ZM). On the other hand, let
JP (V )χ denote the closed subrepresentation of JP (V ) on which ZM acts via χ.

Proposition 4.48. If V is an object of Repla.c(P ), then the natural composition of maps
JP (V )→ V N0 → V induces an isomorphism of objects in Repz

la.c(ZM):

JP (V )χ
∼−→ V N0,Z

+
M=χ.

[Eme06a, Proposition 3.4.9]

From this point onward, let F = Qp so that G := G(Qp) is a locally Qp-analytic group,
where G is a connected reductive group over Qp, and suppose G splits over E. Keep all
other notation the same as for when we defined the JP functor.
Let S denote the maximal subtorus of ZM that splits over Qp. Let X• (respectively X•)

denote the character (respectively cocharacter) lattice of ZM over Qp. Similarly, let Y •

(respectively Y•) denote the character (respectively cocharacter) lattice of S (over Qp or Qp).

There is a natural action of Gal(Qp/Qp) on ZM and Gm, and this extends to an action on
X• and X• by conjugation, compatible with respect to the canonical pairing between them.
The natural embedding Y• → X• identifies Y• with the sublattice of Galois invariants in X•.

Let S := S(Qp) and ZM := ZM(Qp). Let S0 (respectively Z0
M) denote the maximal

compact subgroup of S (respectively ZM). There is a natural map:

ZM → Hom(X•,Q) = Hom(X•,Z)⊗Z Q = X• ⊗Z Q

z 7→
[
χ 7→ ∇z(χ) := ordQp

(χ(z))
]
.

The functions ∇z are Galois invariant, so this map factors as:

ZM → Y• ⊗Z Q.
Let Y ′

• denote the image of this map. Since S is split, when restricted to S, there is a
surjection S → Y•, whose kernel is S0. There is a diagram of short exact sequences:

0 S0 S Y• 0

0 Z0
M ZM Y ′

• 0.

Since Y• and Y ′
• are both free Z-modules of finite rank, each row is split.
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Definition 4.49. Let ẐM denote the rigid space of locally Qp-analytic characters of ZM .

(i) Given χ ∈ ẐM(E), define a function ∆χ : ZM → Q by the formula:

∆χ(z) := ordE(χ(z)).

This is trivial on Z0
M , and factors through a map Y ′

• → Q.
(ii) This yields a map Y• → Y ′

• → Q, and hence an element of Y •⊗ZQ via the isomorphism:

Y • ⊗Z Q = Hom(Y•,Z)⊗Z Q = Hom(Y•,Q).

The element of Y • ⊗Z Q associated to χ is called the slope of χ, denoted slope(χ).
[Eme06a, Definition 1.4.2]

Example 4.50. Let G = GL2 /Qp and P denote the standard Borel subgroup of upper
triangular matrices. In this case, S = ZM so the two rows of short exact sequences are equal.
Let T := S = ZM = M be the diagonal torus, and T := T(Qp). Then

X• = Hom(T,Gm) = {[a, b] ∈ Z2 : diag(t1, t2) 7→ ta1t
b
2} ∼= Z2

X• = Hom(Gm,T) = {[e, f ] ∈ Z2 : t 7→ diag(te, tf )} ∼= Z2.

Here, T 0 = diag(Z×
p ,Z×

p ). Recall that the map t 7→ ∇t induces a natural isomorphism:

T/T 0 ∼−→ X•

diag(pe, pf ) 7→ [e, f ].

Let χ ∈ T̂ (E) be an unramified character; this means χ : T → E× satisfies that χ(T 0) = 1.
Let α := χ( p

1 ) and β := χ
(
1
p

)
. Then χ is completely determined by the pair (α, β).

We will show that slope(χ) = [ordE(α), ordE(β)] as an element in X• ⊗Z Q. Indeed, being
unramified, χ induces a character T/T 0 → E×, and hence also:

X• → E×

[e, f ] 7→ αeβf

ordE===⇒
X• → Q

[e, f ] 7→ e ordE(α) + f ordE(β).

This corresponds to the element [ordE(α), ordE(β)] in X
• ⊗Z Q, which is slope(χ).

Let ∆(G, S) denote the set of positive restricted roots of S; these are the characters of S
appearing in the adjoint action of S on the Lie algebra of N. Let ∆(G,S)s denote the subset
of positive simple restricted roots. Let R• denote the sublattice of Y • spanned by ∆(G,S)s,
and let (R• ⊗Z Q)≥0 denote the cone in R• ⊗Z Q generated by the Q≥0-span of ∆(G,S)s.

Let δP denote the modulus character of P , regarded as a smooth character of M . If
we write ρ := ρ(G,S) as the one-half sum of the elements in ∆(G, S), each counted with
the multiplicity with respect to which it appears in the adjoint action of S on N, then
slope(δ|S) = −ρ. (This is where the assumption that F = Qp is used.)
Let W be a finite-dimensional irreducible algebraic representation of G over E. Since G

splits over E, the theory of highest weight tells us that the space WN of N-invariants of W
is an irreducible algebraic representation of M, and so ZM must act on WN via a central

character ψ ∈ X•(ZM). We can regard ψ as being an element of ẐM(E). We also fix a

smooth (i.e. locally constant) character θ ∈ ẐM(E), and write χ := θψ.
Let us fix a Borel subgroup B of G, defined over E. Let T be a maximal torus of this

Borel subgroup, again defined over E, that is contained in M. The intersection M∩B is then

a Borel subgroup of M. Let ψ̃ ∈ X•(T) denote the highest weight of the representation W
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with respect to B; this is also the highest weight of the M-representation WN with respect

to M∩B. Note ψ̃|ZM = ψ. Recall n is the Lie algebra of N . Let n′ denote the Lie algebra of
the unipotent radical of B. If α is a simple restricted root of ZM acting on n, then denote
by α̃ the simple root of T acting on n′ that lifts α. If ρ̃ := ρ(G,T) is the one half sum of
positive roots of T acting on n′, then ρ̃|S = ρ.

Definition 4.51. We say that χ = ψθ is of critical slope with respect to the representation
WN (of M) if for some positive simple root α ∈ ∆(G,ZM), the element

sα̃(ψ̃ + ρ̃)|S + slope(θ) + ρ

of Y • ⊗Z Q in fact lies in the positive cone (R• ⊗Z Q)≥0. Otherwise, we say that χ is of
non-critical slope with respect to WN.
[Eme06a, Definition 4.4.3]

These are literally just random words until we do the following illuminating calculation.

Example 4.52. Let G := GL2(Qp), and B = TN be the Levi decomposition of the standard
upper triangular Borel subgroup of G. Let δB denote the modulus character of B. For k ≥ 2,
let Wk := Symk−2Q2 be the irreducible representation of GL2 /Q, with highest weight ψk.
Let Γ := GL2(A∞,p) be the auxiliary locally compact group. Let G := GL2 /Q.

Let π be a cuspidal automorphic representation of GL2 /Q such that π∞ is the discrete
series representation of weight k (in the arithmetic normalization), and πp is unramified; that
is, the GL2(Zp)-fixed vectors in πp form a one-dimensional subspace, or equivalently there
exist unramified characters θ1, θ2 : Q×

p → C× such that if θ := θ1 ⊗ θ2 : T → C× then:

πp = IndG
B θ.

(This is the normalized induction.) Therefore, associated to π is some newform f ∈ Sk(Γ1(N))
for some p ∤ N , such that Tpf = ap(f)f . The functions f(z) and f(pz) span a two-
dimensional subspace of oldforms in Sk(Γ1(N) ∩ Γ0(p)), which is preserved by the Atkin-
Lehner Up-operator at this level. The restriction of Up to this two-dimensional subspace has
the familiar characteristic polynomial:

X2 − ap(f)X + pk−1ε(p)

where ε is the nebentypus of f . If α and β are roots of this polynomial, with α ̸= β, then
the p-stabilized eigenforms fα := f(z) − αf(pz) and fβ := f(z) − βf(pz) form a basis for
this subspace of oldforms, such that Upfα = βfα and Upfβ = αfβ. Let ϕf , ϕfα , ϕfβ denote
the automorphic forms associated to f, fα, fβ in π = πf . Let ϕfα,p and ϕfβ ,p denote the
components of ϕfα and ϕfβ inside πp. They are fixed by the following subgroup:

K0(p) := {( a b
c d ) ∈ GL2(Zp) : c ≡ 0 (mod pZp)} .

This admits an Iwahori decomposition with respect to B = TN :

K0(p) =
(

1
pZp 1

)( Z×
p

Z×
p

)(
1 Zp

1

)
.

Let N0 :=
(
1 Zp

1

)
, then indeed ϕfα,p, ϕfβ ,p ∈ πN0

p . Let K0 := K0(p). Normalize the Haar
measure on GL2(Zp) so that meas(K0) = 1, and normalize the product measure on the
Iwahori decomposition of K0 so that meas(N0) = 1. Recall that S− consists of elements
s = ( s1

s2 ) ∈ GL2(Qp) such that |s1| ≤ |s2|. Here are some facts:
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(a) The proof of [Cas95, Lemma 1.5.1] tells us that for any s ∈ S−:

[K0 : K0 ∩ sK0s
−1] = [N0 : sN0s

−1]. (Recall sN0s
−1 ⊂ N0)

(b) The proof of [Eme06a, Lemma 4.4.2] tells us that for any s ∈ S−, and any ϕ ∈ πN0
p :

[N0sN0]ϕ = [N0 : sN0s
−1]PN0,s(ϕ). (Recall sN0s

−1 ⊂ N0)

(c) Our earlier calculation in particular implies that for any s ∈ S− and ϕ ∈ πK0
p :

[K0sK0]ϕ = [K0 : K0 ∩ sK0s
−1]PK0,s(ϕ).

Therefore, [N0sN0]ϕ = [K0sK0]ϕ for any s ∈ S− and ϕ ∈ πK0
p (with our choice of measures).

Let sp = ( p
1 ) and rp := ( p

p ) be elements of S−. Let Up := [N0spN0]. Then by the formulas
above, and the fact that we have chosen the arithmetic normalization:

[N0spN0]ϕfα,p = [K0spK0]ϕfα,p = βϕfα,p

[N0spN0]ϕfβ ,p = [K0spK0]ϕfβ ,p = αϕfβ ,p

Since α, β ̸= 0, one has ϕfα,p, ϕfβ ,p ∈ (πp)
N0
fs by definition. Recall that π has an adelic central

character A× → C× given by z 7→ |z|2−kω(z) where ω := ωε is the adelic character associated
to the nebentypus ε of f . Using this, one calculates:

[N0rpN0]ϕfα,p(g) = [K0rpK0]ϕfα,p(g) = ϕfα,p(gsp) = pk−2ε(p)ϕfα,p(g)

[N0rpN0]ϕfβ ,p(g) = [K0rpK0]ϕfβ ,p(g) = ϕfβ ,p(gsp) = pk−2ε(p)ϕfβ ,p(g)

Let θ′ := θ2 ⊗ θ1. The N -coinvariants of πp decomposes as a T -representation into:

(πp)N = δ
1/2
B (θ ⊕ θ′).

Recall that the isomorphism (πp)
N0
fs

∼−→ (πp)N commutes with the action of S−. Since the

action of S− is invertible on (πp)
N0
fs , this extends to a T = ⟨S−⟩-equivariant isomorphism.

Since the matrices sp and rp act on both ϕfα,p and ϕfβ ,p via scalars, the monoid S− must then

act on them via scalars, since diag(Z×
p ,Z×

p ) acts trivially on vectors in πK0
p . The characters

by which S− act on ϕfα,p and ϕfβ ,p must be different, since α ̸= β. Without loss of generality,

let us assume that S− acts on ϕfβ ,p via δ
1/2
B θ, and ϕfα,p via δ

1/2
B θ′. Calculate:

p−1/2θ1(p)ϕfβ ,p = δ
1/2
B (sp)θ(sp)ϕfβ ,p = PN0,sp(ϕfβ ,p)

= [N0 : spN0s
−1
p ]−1[N0spN0]ϕfβ ,p

= p−1[K0spK0]ϕfβ ,p

= p−1αϕfβ ,p.

This implies that θ1(p) = p−1/2α.

θ1(p)θ2(p)ϕfβ ,p = δ
1/2
B (rp)θ(rp)ϕfβ ,p = PN0,rp(ϕfβ ,p)

= [N0 : rpN0r
−1
p ]−1[N0rpN0]ϕfβ ,p

= [K0rpK0]ϕfβ ,p

= pk−2ε(p)ϕfβ ,p.

Therefore, θ1(p)θ2(p) = pk−2ε(p). But pk−1ε(p) = αβ, so θ2(p) = p−1/2β. We can repeat the
same calculation for ϕfα,p, but it will just recover the same values for θ1(p) and θ2(p).
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Write π = π∞⊗π∞, π∞ = πp⊗πp, and fix an isomorphism C ∼= Qp. We can regard π∞ as a

representation of GL2(A∞) on a Qp-vector space, andWk as a Qp-vector space equipped with

an action of GL2 /Qp, which restricts to an action of G. We can choose a finite extension E
of Qp to which π∞ descends, and ensure the choice of E is sufficiently large so that G splits
over E (note that this last condition is superfluous for G = GL2). Then Wk also admits a
descent to E. Let π∞ now denote a descent of π∞ to E, and let Wk denote a descent of Wk

to E. Let us denote π̃p := πp ⊗E W
∨
k and π̃p := πp. Then:

π̃ := π̃p ⊗E π̃
p

is the p-adic automorphic representation of GL2(A∞) = G × Γ attached to π, obtained
in the “∞-to-p switch” for cohomological automorphic representations of GL2 /Q, which is
described in more detail in [Eme06b, §3.1]; recall that the “∞-to-p switch” we described
earlier only applies to groups G/Q such that G(R) is compact.

The p-th component of π̃p of π̃ is a locally W∨
k -algebraic representation of G. Recall that

Proposition 4.47 gives us an easy formula to compute its Jacquet module. Indeed, this is:

JB(π̃p) = JB(πp ⊗E W
∨
k ) = (πp)N ⊗E (W∨

k )
N = δ

1/2
B (θ ⊕ θ′)⊗E ψ

∨
k .

Let χ := δ
1/2
B θψ∨

k so that δ
1/2
B θ is the unramified character associated to ϕfβ ,p from earlier.

Let us consider the χ-eigenspace of JB(π̃p).

Proposition 4.53. χ is non-critical if and only if ordp(α) < k − 1.
[Eme06b, Corollary 4.4.3]

Proof. Let T be the diagonal torus in G = GL2 /Q. Then T = S = ZM = M in the definition
of non-critical slope, so Y • = X• = Hom(T,Gm). Write X• = Z2 so that it is spanned
by characters e1 = [1, 0] :

(
t1

t2

)
7→ t1 and e2 = [0, 1] :

(
t1

t2

)
7→ t2. Let (R• ⊗Z Q)≥0 be

the Q≥0-cone in ∆(G,T) spanned by our choice of simple root e1 − e2 ∈ ∆(G,T)s. The
corresponding simple reflection s := se1−e2 just exchanges e1 and e2. Let ρ := 1

2
(e1 − e2)

denote the standard one-half sum of positive roots.

Let h := ordp(α) = ordp(p(δ
1/2
B θ)(sp)). From earlier, the constant term of the characteristic

polynomial of Up tells us that k − 1 = ordp(α) + ordp(β). Let s
′
p :=

(
1
p

)
, then:

k − 1− h = ordp(β) = ordp((δ
1/2
B θ)(s′p)).

On the other hand, since δ
1/2
B θ is unramified, we have already calculated that:

slope(δ
1/2
B θ) = [ordp((δ

1/2
B θ)(sp)), ordp((δ

1/2
B θ)(s′p))] = [h− 1, k − 1− h].

Finally, one calculates:

slope(δ
1/2
B θ) + ρ+ s(ψ∨

k + ρ) = [h− 1, k − 1− h] + [1
2
,−1

2
] + s([0, 2− k] + [1

2
,−1

2
])

= [h− 1, k − 1− h] + [1
2
,−1

2
] + [2− k, 0] + [−1

2
, 1
2
]

= [h+ 1− k, k − 1− h]
= (h+ 1− k)[1,−1].

The character χ is non-critical if and only if h+ 1− k < 0. This is equivalent to:

ordp(α) < k − 1. □

As promised, we present the final theorem of this section.
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Theorem 4.54. Let V be an object of Repla.c(G), and suppose that V admits a G-invariant
norm. If χ is of non-critical slope, then the following map is an isomorphism:

JP (VW -lalg)
χ ∼−→ JP (V )χ

WN -lalg
= (V N0,Z

+
M=χ)WN -lalg.

[Eme06a, Theorem 4.4.5], [Eme06b, Proposition 2.3.6]

5. Eigenvarieties

Let G be a connected reductive group over Q. Let us also assume that G(R) is compact
and connected. Suppose G is quasi-split over Qp. Let E be a finite extension of Qp over
which G splits. We fix a Levi factor T in a Borel subgroup B of G/Qp, so that T is a torus,

and let T̂ denote the rigid analytic space over E which parameterizes the locally analytic
characters of T := T(Qp) over E. Let B := B(Qp), G := G(Qp), and Γ := π0 ×G(A∞,p).
Let us fix a tame level Kp in G(A∞,p).

Definition 5.1. We say that Kp is unramified at a place q ̸= p of Q if:

(a) G is unramified at q; that is, if G is quasi-split over Qq, and splits over an unramified
extension of Qq.

(b) The compact open subgroup Kp
q := Kq ∩ G(Qq) of G(Qq) is a hyperspecial maximal

compact subgroup of G(Qq).

Otherwise, we say that Kp is ramified at q.
[Eme06b, Definition 2.3.1]

Let S denote the (finite) set of ramified primes of Kp. If H is a compact open subgroup
of a locally compact group G, then we let H(G//H) denote the Hecke algebra of H double
cosets of G, with coefficients in E. We abbreviate H(G(A∞,p)//Kp), H(G(QS)//K

p
S), and

H(G(A∞,S)//Kp,S) by H(Kp), H(Kp)ram, and H(Kp)sph, respectively. There is a tensor
product decomposition of the Hecke algebra induced by the product decomposition of Kp:

H(Kp) = H(Kp)ram ⊗E H(Kp)sph.

Indeed, H(Kp)sph is a central subalgebra of H(Kp). By Theorem 3.50, the space H̃0(Kp)la is
naturally identified with the Kp-invariants in the admissible locally analytic representation

H̃0
la of π0 × G(A∞). The space H̃0(Kp)la is equipped with a locally analytic representation

of G, together with commuting continuous actions of π0 and H(Kp)sph. Then the Jacquet

module JB(H̃
0(Kp)la) is an essentially admissible locally analytic representation of T , again

equipped with commuting continuous actions of π0 and H(Kp)sph.

Recall from the definition of essential admissibility that this means JB(H̃
0(Kp)la)

′
b is a

coadmissible module for the nuclear Fréchet algebra Can(T̂ , E)⊗̂EDla(H,E)b for some open
compact subgroup H of T . We choose H = T 0 to be the maximal compact subgroup of T .
Now if E is discretely valued (as it is here) then this completed tensor product is actually a
Fréchet-Stein algebra. See the paragraph just before [Eme17, Definition 6.4.9] for a discussion
of this. There is the following proposition:

Proposition 5.2. If Z is a topologically finitely generated abelian locally Qp-analytic group,

then there is a natural continuous injection of topological E-algebras Dla(Z,E)b → Can(Ẑ, E).
This map has dense image, and if Z is furthermore compact, then it is an isomorphism.
[Eme17, Proposition 6.4.6]
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Since T 0 is compact, Dla(T 0, E)b
∼−→ Can(T̂ 0, E), and hence the action of:

Can(T̂ , E)⊗̂EDla(T 0, E)b ∼= Can(T̂ , E)⊗̂ECan(T̂ 0, E)

factors through the quotient:

Can(T̂ , E)⊗̂Can(T̂ 0,E)
Can(T̂ 0, E) ∼= Can(T̂ , E) = OT̂ (T̂ ).

Recall that T̂ is a rigid analytic variety defined over E. Indeed, the construction of T̂ in

[Eme17, Proposition 6.4.5] tells us that T̂ is a quasi-Stein rigid space. Then the theory of
quasi-Stein rigid spaces tells us the following:

Theorem 5.3. There is an equivalence of categories between the category of coherent rigid

analytic sheaves on the quasi-Stein space T̂ and the category of coadmissible modules over the

Fréchet-Stein algebra OT̂ (T̂ ) = Can(T̂ , E). This equivalence is given by sending a coherent
sheaf to its module of global sections.
[ST04, Corollary 23.6]

We can extend this equivalence even further.

Proposition 5.4. There is an anti-equivalence of categories between the category of coherent

sheaves on T̂ , and the category of essentially admissible locally analytic representation of T

defined over E. This equivalence is given by sending a coherent sheaf over T̂ to the strong

dual of its module of global sections over Can(T̂ , E), which can be viewed as a representation

of T via the natural embedding T → Can(T̂ , E).
[Eme06a, Proposition 2.3.2]

Let M denote the coherent sheaf on T̂ associated to the essentially admissible locally

analytic representation JB(H̃
0(Kp)la) of T . SinceM is an OT̂ -module, we can treat End(M)

as an OT̂ -algebra, with the natural structure map OT̂ → End(M). Recall there is also an

action of the commutative E-algebra H(Kp)sph on JB(H̃
0(Kp)la) which induces an action of

H(Kp)sph on M (that is, an action of H(Kp)sph on M(U) for all open sets U ⊂ T̂ ). This
gives rise to a coherent OT̂ -subalgebra A of End(M), generated by the image of H(Kp)sph.

We can then form the relative rigid analytic spectrum of A over T̂ , with structure map:

E := Sp(A)→ T̂ .

This E is the eigenvariety associated to G. It should parameterize eigenvectors for the

simultaneous actions of T and H(Kp)sph on JB(H̃
0(Kp)la). This is precisely the content of

the following key theorem.

Theorem 5.5.

(a) The natural projection E → T̂ is a finite morphism, with set-theoretic image equal to the
support Supp(M) ofM.

(b) The map E → t∨, where t∨ is the dual of the Lie algebra of T , induced by composition

of the structure map E → T̂ with the natural map T̂ → t∨, given by differentiating a
character T → E× to obtain t→ E, has discrete fibres. In particular, the dimension of

E is at most equal to the dimension of T̂ .
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(c) By construction, there is a Zariski-closed embedding E ↪→ T̂ × Sp(H(Kp)sph). We can

viewM as a sheaf on E by pulling back along the structure map E → T̂ , and then view it

as a sheaf on T̂×Sp(H(Kp)sph) via extension-by-zero along the Zariski-closed embedding.

T̂
f←− E

g
↪−→ T̂ × Sp(H(Kp)sph)

Then the fibre of g!f
∗M over a point (χ, λ) of T̂ × Sp(H(Kp)sph) is the dual to the

(T = χ,H(Kp)sph = λ)-eigenspace of JB(H̃
0(Kp)la). In particular, the point (χ, λ) lies

in E if and only if this eigenspace is non-zero.

[Eme06a, Proposition 2.3.3]

Remark 5.6. As pointed out to me, H(Kp)sph is not a finitely generated E-algebra, and
hence it does not make sense to write Sp(H(Kp)sph). However, I suspect this issue has a
simple solution which is to replace “Sp(H(Kp)sph)” with Sp(A) where A is the image of

H(Kp)sph inside the endomorphism ring of JB(H̃
0(Kp)la)

′
b.

Example 5.7. LetM be a finite-dimensional C-vector space, equipped with two commuting
linear operators Y and X, where X is invertible, and both X and Y are diagonalizable. In
particular, X and Y are simultaneously diagonalizable. For simplicity, we also assume that
all eigenvalues are distinct. Thus, if mX and mY are the minimal polynomials of X and Y ,
respectively, and if e1, . . . , en is a basis of simultaneous eigenvectors for X and Y , then:

Xei = µiei for all 1 ≤ i ≤ n,

Y ei = λiei for all 1 ≤ i ≤ n,

mX(t) = (t− µ1) . . . (t− µn),

mY (t) = (t− λ1) . . . (t− λn).
Fix an isomorphism EndC(M) ∼= Mn(C) induced by this choice of basis. Let us rephrase
everything in terms of our eigenvariety setup:

(i) We can view M as a module for C[X,X−1] = OT̂ (T̂ ), where T = Z, T̂ = Gm, and
the abelian group T acts on M via the inclusion Z → C[X,X−1] sending 1 7→ X. In
particular, this gives us a map C[X,X−1]→ EndC(M), with image:

C[X,X−1]

(mX(X))
.

(ii) We can also endow M with an action of H = C[Y ], which is the analogue of the Hecke
algebra in our setup. This induces a natural map C[Y ]→ EndC(M), with image:

C[Y ]

(mY (Y ))
.

The image of C[Y ] commutes with the image of C[X,X−1] in EndC(M). Let A denote the
C[X,X−1]-algebra in EndC(M) generated by the image of C[Y ]. Then:

A =
C[X,X−1, Y ]∑
S(mS(X, Y ))

where for a subset S ⊂ {1, . . . , n}, one defines:

mS(X, Y ) :=
∏
i∈S

(X − µi)
∏
i/∈S

(Y − λi).
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There is a natural chain of ring maps:

C[X,X−1, Y ] ↠
C[X,X−1, Y ]∑
S(mS(X, Y ))

← C[X,X−1]

(mX(X))
↞ C[X,X−1].

This induces a map on spectra:

T̂ × Spec(H)←↩ E := Spec(A)→ Supp(M) ↪→ T̂ .

The maximal ideals of A are in one-to-one correspondence with those maximal ideals of
C[X,X−1, Y ] that contain

∑
S(mS(X, Y )). One can check that these ideals are exactly

mi = (X − µi) + (Y − λi) for 1 ≤ i ≤ n. So the preimage of the maximal ideal (X − µi)

under the structure map E → T̂ contains a unique maximal ideal mi = (X − µi) + (Y − λi).
Furthermore, we can endowM with an A-module structure via base change: M⊗C[X,X−1]A.

This extends to a natural action of C[X,X−1, Y ] by pulling back along the surjection. Let
(X−µi, Y −λi) denote some maximal ideal of A, then the fibre of this C[X,X−1, Y ]-module
at the maximal ideal that we have selected can be written as:

M ⊗C[X,X−1]

C[X,X−1, Y ]

(X − µi, Y − λi)
.

This is a quotient of M , isomorphic to the (X = µi, Y = λi)-subspace of M .

Remark 5.8. IfM is an R-module, andH is a commutative ring of R-linear endomorphisms
of M , then let T denote the image of H in EndR(M), which [Bel21] calls an eigenalgebra.
The properties of Spec(T ) are studied extensively in [Bel21, Chapter I].

Example 5.9. Let Π := H̃0(Kp)la. Let E → T̂ be the structure map of the eigenvariety E
associated to the essentially admissible locally analytic representation JB(Π) of T . We give

an explicit description of the fibres of the structure map E → T̂ . For a point x ∈ T̂ , let k(x)
denote its residue field, and associate to x the following character, obtained by composing

the natural embedding T → OT̂ (T̂ ) with the reduction map at x:

χx : T → OT̂ (T̂ )→ OT̂ (T̂ )⊗ k(x).

LetM be the sheaf on T̂ associated to the representation JB(Π) of T . Then

Mx ⊗ k(x) =M(T̂ )⊗ k(x) (since T̂ is quasi-Stein)

= JB(Π)
′ ⊗ k(x)

= Lb,T+(OT̂ (T̂ ),Π
N0)′ ⊗ k(x)

= [OT̂ (T̂ )⊗E[T+] (Π
N0)′]⊗ k(x)

= [k(x)⊗OT̂ (T̂ )]⊗E[T+] (Π
N0)′

= χx ⊗E[T+] (Π
N0)′

= HomT+(χx,Π
N0)′.
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On the other hand, let U := Sp(B) ⊂ T̂ be an affinoid containing x. Then the fibre at x is:

Sp(A)x := Sp(A)×T̂ Sp(k(x))

= Sp(A(U))×U Sp(k(x))

= Sp(A(U)⊗B k(x))

= Sp(Ax ⊗Bx k(x)).

Since A ⊂ End(M), there is an inclusion of fibres:

Ax ⊗Bx k(x) ⊂ End(Mx)⊗Bx k(x) = End(Mx ⊗Bx k(x)).

It is not difficult to see that Ax⊗Bxk(x) is just the subring of endomorphisms ofMx⊗Bxk(x),
which we interpret to be the dual of the χx-isotypic component of ΠN0 , generated by the
induced action of H(Kp)sph on this space. Therefore, Sp(A)x encodes the eigenvectors in

ΠN0 simultaneous for the action of H(Kp)sph via any character, and of T via χx.

In order to work with the eigenvariety in practice, one might wish to define some auxiliary
spaces, such as the weight space and spectral variety, which we shall define promptly.

Let T 0 denote the maximal compact subgroup of T . We define

W := T̂ 0

to be the weight space of our eigenvariety. Choose a distinguished element z ∈ T+ such
that T is generated as a monoid by T+ and the group generated by z. Let Y be the closed

subgroup of T generated by T 0 and z. Let Ŷ denote the character variety of Y . Then Ŷ can
be identified with W ×Gm:

Ŷ = T̂ 0 × ⟨̂z⟩ ∼=W ×Gm.

If we denote the global sections of Gm by C{{X,X−1}}, then we remark crucially that the
isomorphism on the right hand side is induced by the map on global sections which sends
δz 7→ X−1 (and not X), where δz is the evaluation-at-z function.
Let Y + be the submonoid of Y ∩ T+ generated by T 0 and z. Then Y + is open in Y , and

Y + generates Y as a group. Furthermore, Y T+ = T .

Recall that H̃0(Kp)la is a representation of G, and H̃0(Kp)N0
la admits an action of T+. The

functor of taking finite-slope depends on the action of T+, since intuitively we are finding

a maximal subspace on which the action of T+ becomes invertible. Let us equip H̃0(Kp)N0
la

with an action of Y + via restriction. Then there is a natural Y -equivariant inclusion map:

JB(H̃
0(Kp)N0

la ) := (H̃0(Kp)N0
la )T -fs → (H̃0(Kp)N0

la )Y -fs.

By [Eme06a, Lemma 3.2.22], one has that the T+-action on H̃0(Kp)N0
la induces a T+-action

on its finite slope part (H̃0(Kp)N0
la )Y -fs, which then comes with a natural action of Y T+ = T .

The Y -equivariant map then upgrades to a T -equivariant map for free. Finally, the result of
[Eme06a, Proposition 3.2.27] tells us that the above map is a T -equivariant isomorphism:

JB(H̃
0(Kp)N0

la ) := (H̃0(Kp)N0
la )T -fs

∼−→ (H̃0(Kp)N0
la )Y -fs.

Recall that JB : Repes(G) → Repes(T ), so the left hand side is an essentially admissible
locally analytic representation of T . A crucial part of showing that the target of JB is
Repes(T ) relies on the following pair of lemmas. (We ultimately want to show that the right
hand side is an essentially admissible locally analytic representation of Y .) We digress briefly
to discuss some generalities, before returning to our current discussion.
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Let A be an E-Fréchet algebra, written as a projective limit A = lim←−n
An, where each An

is a compact type topological E-algebra, each of the transition maps An+1 → An is compact,
and each of the natural projection maps A → An has dense image. Suppose also that the
projective system is cofinal with a projective system of E-Banach algebras, so that A is a
nuclear Fréchet algebra, in the sense of [Eme17, Definition 1.2.12].

Lemma 5.10. Let V be a locally convex E-vector space of compact type, equipped with an
A-module structure for which the multiplication map A × V → V is separately continuous.
Suppose also that V is equipped with a topological Z+-action commuting with the above given
A-action, so that V is an object of Reptop.c(Z

+). Then the A-module structure on Vfs induced
by functoriality makes Vfs into an A-module, and the multiplication map A × Vfs → Vfs is
again separately continuous.
[Eme06a, Lemma 3.2.22]

In the context of the preceding lemma, the A-module structure on Vfs induces a topological
A-module structure on its strong dual (Vfs)

′
b [Eme17, Proposition 1.2.14]. Since Vfs is an

object of Repz
la.c(Z), the Z-action on (Vfs)

′
b extends uniquely to a topological Can(Ẑ, E)-action

[Eme17, Proposition 6.4.7]. Therefore, (Vfs)
′
b is in fact a topological Can(Ẑ, E)⊗̂EA-module.

Proposition 5.11. In the above situation, suppose given the following data:

(i) For each n ≥ 0, a compact type topological An-module Un, equipped with an An-linear
action of Z+, as well as an An+1[Z

+]-linear transition map Un+1 → Un, such that
the induced An[Z

+]-linear map An⊗̂An+1Un+1 → Un is An-compact, in the sense of
[Eme06a, Definition 2.3.3].

(ii) An element z ∈ Z+, such that for each n ≥ 0, the map Un → Un induced by z factors
through the transition map An⊗̂An+1Un+1 → Un, so as to give a commutative diagram:

An⊗̂An+1Un+1 Un

An⊗̂An+1Un+1 Un.

id ⊗̂z z

(iii) An A[Z+]-equivariant isomorphism V ′
b

∼−→ lim←−n
Un.

Then (Vfs)
′
b is a coadmissible Can(Ẑ, E)⊗̂EA-module, in the sense of [Eme17, Definition 1.2.8].

[Eme06a, Proposition 3.2.23]

In our situation, let A denote the E-Fréchet-Stein algebra:

A := Dla(T 0, E)
∼−→ Can(T̂ 0, E) = O

T̂ 0(T̂ 0) = OW(W).

Let Π be an object of Repes(G). We have seen that ΠN0 comes equipped with a T+-action,
which we restrict to a Y +-action, so that ΠN0 is an object of Reptop.c(Y

+). Taking finite

slope gives us (ΠN0)Y -fs which is an object of Repz
la.c(Y ). Indeed, the Y -action on ((ΠN0)Y -fs)

′
b

extends uniquely to a Can(Ŷ , E)-action. Moreover, recall there is a natural Dla(Y,E)b-module
structure on ((ΠN0)Y -fs)

′
b, which we restrict to an action of A := Dla(T 0, E). This equips the

space ((ΠN0)Y -fs)
′
b with a Can(Ŷ , E)⊗̂EA-module structure.

Proposition 5.12. There is an admissible cover of W by open affinoids

U1 ⊂ U2 ⊂ · · · ⊂ Uh ⊂ . . .
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such that for each h ≥ 1, there exist(s):

(i) An Ah := OW(Uh)-Banach module Vh satisfying condition (Pr) of [Buz07].
(ii) An Ah-compact endomorphism, denoted zh, of the Ah-module Vh. (Recall the notion of

Ah-compact endomorphisms of spaces of (Pr)-type from [Buz07, §2].)
(iii) Continuous Ah-linear maps:

αh : Vh → Vh+1⊗̂Ah+1
Ah

βh : Vh+1⊗̂Ah+1
Ah → Vh

such that βh ◦ αh = zh and αh ◦ βh = zh+1 ⊗ 1Ah
where βh is Ah-compact.

(iv) An OW(W)-linear topological isomorphism:

(ΠN0)′b
∼= lim←−

h

Vh

commuting with the actions of z (on the left side) and (zh)h≥1 (on the right side).

These conditions can be summarized in the following commutative diagram.

(ΠN0)′ . . . Vh+1 Vh+1⊗̂Ah+1
Ah Vh . . .

(ΠN0)′ . . . Vh+1 Vh+1⊗̂Ah+1
Ah Vh . . .

z zh+1

βh

zh+1⊗1Ah
zh

αh

βh

[BHS17, Proposition 5.3]

This is precisely the construction required to imply that ((ΠN0)Y -fs)
′
b is a coadmissible

Can(Ŷ , E)⊗̂EA-module. This furthermore implies that (ΠN0)Y -fs is an essentially admissible
locally analytic representation of Y .

Therefore, returning to the situation that we are interested in, we have shown that the

locally analytic Y -representation (H̃0(Kp)N0
la )Y -fs is actually an essentially admissible locally

analytic representation of Y . By imitating the arguments earlier in this section, we can find

a coherent sheaf N on Ŷ =W ×Gm with global section:

Γ(Ŷ ,N ) = ((H̃0(Kp)N0
la )Y -fs)

′
b
∼= ((H̃0(Kp)N0

la )T -fs)
′
b = JB(H̃

0(Kp)N0
la )′b.

Let Yz denote the support of N in W ×Gm. The following square commutes.

E T̂

Yz W ×Gm W .

f

κ

h

g

Indeed, one can show that Yz is the image of E under the composition E → T̂ →W ×Gm.
This in particular implies that the arrow E → Yz is surjective.

Definition 5.13. A closed analytic subvariety, in the sense of [BGR84, §9.5.3], of W ×Gm

is called a Fredholm hypersurface if it is of the form Z(F ) for F ∈ 1 + TO(W){{T}}, where
Z(F ) := {(x, t) ∈ W ×Gm : F (x, t−1) = 0},
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and O(W){{T}} = O(W×A1) denotes the ring of convergent power series onW×A1. Please
refer to [CM98, §1.3], [Buz07, §3], [Con99, §4] and [Che04, §5,§6] for more details.

Proposition 5.14. The space Yz is a Fredholm hypersurface ofW×Gm. Furthermore, there
exists an admissible cover {U ′

i}i∈I of Yz by affinoids U ′
i for which g induces a finite surjective

morphism from U ′
i onto an open affinoid Wi of W, and U ′

i is a connected component of
g−1(Wi). Finally, for each i ∈ I, the section Γ(U ′

i ,N ) is a finite projective OW(Wi)-module.
[BHS17, Lemma 3.9]

Proof. Let Π := H̃0(Kp)la. We use the admissible cover {Uh}h≥1 of W constructed earlier,
such that (ΠN0)′b = lim←−h

Vh. Recall that zh = βh ◦ αh and zh+1 ⊗ 1Ah
= αh ◦ βh, and hence

their characteristic power series give the same element of Ah{{T}} by [Buz07, Lemma 2.12].
Furthermore, [Buz07, Lemma 2.13] tells us that the image of the characteristic power series
of zh+1 agrees with that of zh+1 ⊗ 1Ah

under the natural map Ah+1{{T}} → Ah{{T}}. Let
Fh denote the characteristic power series of zh, then we have just shown that the image of
Fh+1 ∈ Ah+1{{T}} in Ah{{T}} coincides with Fh. Let F denote the compatible system (Fh)h≥1

which we can view as an element of OW(W){{T}}.
Recall that Yz is the support of N . We shall show that Yz consists precisely of the points

(y, λ) ∈ W ×Gm such that F (y, λ−1) = 0. Let us henceforth fix x = (y, λ) ∈ W ×Gm, and
h ≥ 1 such that y ∈ Uh.

Lemma 5.15. The fibre Nx ̸= 0 if and only if Γ(Uh × Gm,N ) ⊗O(Uh×Gm) k(x) ̸= 0, where
k(x) := OW×Gm,x/mx is the residue field of W ×Gm at x.

Proof. Since Uh × Gm is a quasi-Stein space, choose an increasing chain of open affinoid
neighbourhoods {Xj}j≥1 in Uh ×Gm and an isomorphism:

Uh ×Gm
∼−→

⋃
j≥1

Xj

which realizes the quasi-Stein structure on Uh × Gm. Recall from the remarks following
[Eme17, Definition 2.1.18] that O(Uh × Gm) is a Fréchet-Stein algebra. This enables us to
rewrite the global sections of N into a projective limit:

Γ(Uh ×Gm,N ) = lim←−
j

Γ(Xj,N ).

Since each Xj is affinoid, it is a fact of commutative algebra that:

Γ(Xj,N )⊗O(Xj) OW×Gm,x
∼−→ Nx.

By commuting the projective limit and the tensor product, we obtain:

Γ(Uh ×Gm,N )⊗O(Uh×Gm) OW×Gm,x =
(
lim←−
j

Γ(Xj,N )
)
⊗O(Uh×Gm) OW×Gm,x

= lim←−
j

(
Γ(Xj,N )⊗O(Xj) OW×Gm,x

)
= lim←−

j

Nx

= Nx.
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This is an isomorphism of OW×Gm,x-modules. Let mx denote the maximal ideal in OW×Gm,x.
Then taking the reduction modulo mx on both sides gives:

Γ(Uh ×Gm,N )⊗O(Uh×Gm) k(x) = Nx/mxNx.

The conclusion of this lemma follows, because Nx = 0 if and only if Nx/mxNx = 0 as a
consequence of Nakayama’s lemma. □

Let us compute Γ(Uh ×Gm,N ) more explicitly.

Γ(Uh ×Gm,N ) = Γ(W ×Gm,N )⊗̂O(W×Gm)O(Uh ×Gm) ([BHS17, Lemma 5.5])

= JB(Π)
′⊗̂O(W×Gm)O(Uh ×Gm)

= (ΠN0)′⊗̂E[Y +]O(W ×Gm)⊗̂O(W×Gm)O(Uh ×Gm)

= (ΠN0)′⊗̂E[Y +]O(Uh ×Gm)

= (ΠN0)′⊗̂O(W)[z]O(Uh){{z, z−1}}

=
(
lim←−
h′

Vh′

)
⊗̂O(W)[z]O(Uh){{z, z−1}}

= lim←−
h′≥h

(
Vh′⊗̂O(Uh′ )[z]

O(Uh){{z, z−1}}
)

= lim←−
h′≥h

(
Vh′⊗̂Ah′ [z]

Ah{{z, z−1}}
)
.

Lemma 5.16. Γ(Uh×Gm,N )⊗O(Uh×Gm) k(x) ̸= 0 if and only if Vh/((zh−λ)Vh+pyVh) ̸= 0,
where py is the maximal ideal associated to the point y in W.

Proof. We calculate the fibre of N at x explicitly:

Γ(Uh ×Gm,N )⊗O(Uh×Gm) k(x) = lim←−
h′≥h

(
Vh′⊗̂Ah′ [z]

Ah{{z, z−1}}
)
⊗Ah{{z,z−1}}

(Ah{{z, z−1}}
mx

)
= lim←−

h′≥h

(
Vh′⊗̂Ah′ [z]

(Ah{{z, z−1}}
mx

))
.

One direction is clear, since the first term of this projective limit is:

Vh⊗̂Ah[z]

(Ah{{z, z−1}}
mx

)
= Vh/mxVh =

Vh
pyVh + (zh − λ)Vh

.

Suppose this first term is non-zero, then recall there are maps of Ah (or Ah[z])-modules:

Vh Vh+1⊗̂Ah+1
Ah Vh.

αh

z

βh

This induces natural maps of Ah{{z, z−1}}-modules:

Vh⊗̂Ah[z]Ah{{z, z−1}} Vh+1⊗̂Ah+1[z]Ah{{z, z−1}} Vh⊗̂Ah[z]Ah{{z, z−1}}.αh βh
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But z acts invertibly on all these spaces, so in particular we can multiply by z−1:

Vh⊗̂Ah[z]Ah{{z, z−1}} Vh+1⊗̂Ah+1[z]Ah{{z, z−1}}

Vh⊗̂Ah[z]Ah{{z, z−1}} Vh⊗̂Ah[z]Ah{{z, z−1}}.

αh

βhz−1

id

Consider the same diagram after taking reduction modulo mx. Then the map αh◦z−1 defines
a section of the first transition map. We can repeat this procedure, so that if the first term
of the projective limit is non-zero, then we can lift this element to a non-zero compatible
system in the projective limit itself. This completes the proof of the lemma. □

Since zh is an Ah-compact endomorphism of Vh and it is Ah-linear, it induces a compact
endomorphism of Vh/pyVh. By [Sch02, Corollary 22.9], the endomorphism 1 − λ−1zh is a
Fredholm endomorphism of Vh/pyVh of index zero. (This means that its kernel and cokernel
are both finite dimensional, and of the same dimension, respectively. Refer to [Sch02, §22].)
Therefore, Vh/((zh − λ)Vh + pyVh) ̸= 0 if and only if the cokernel of 1 − λ−1zh acting on
Vh/pyVh is non-zero if and only if the kernel of 1−λ−1zh acting on Vh/pyVh is non-zero. This
is just asking for λ−1 to be a zero of the characteristic power series of zh on Vh/pyVh which
is an element of k(y){{T}}. But one can easily check that this is the image of Fh under the
map Ah{{T}} → k(y){{T}} which is just taking the reduction of coefficients modulo py.

We have just shown that Yz is a Fredholm hypersurface overW . Thus we can leverage the
general theory of Fredholm hypersurfaces. By [Buz07, Theorem 4.6], there is an admissible
cover of Yz by open affinoids U ′

i such that the map g induces a finite surjective morphism
U ′
i → Wi where Wi is an open affinoid in W and U ′

i is a connected component of g−1(Wi).
Fix i ∈ I. Then the first five paragraphs of [Buz07, §5] tells us that U ′

i is the closed
analytic subvariety of Wi ×Gm cut out by the ideal generated by the polynomial:

Q(T ) ∈ 1 + TOW(Wi)[T ]

and such that F (T ) = Q(T )S(T ) where S(T ) is a Fredholm series in 1+TOW(Wi){{T}} and
(Q,S) = 1. By abuse of notation, let us denote the restriction of N to its support Yz, which
is most unambiguously denoted h∗N , by N as well. We calculate:

Γ(U ′
i ,N ) := Γ(U ′

i , h
∗N )

= Γ(Yz, h
∗N )⊗̂O(Yz)O(U ′

i) ([BHS17, Lemma 5.5])

= Γ(W ×Gm,N )⊗̂O(W×Gm)O(Yz)⊗̂O(Yz)O(U ′
i)

= JB(Π)
′
b⊗̂O(W×Gm)O(Yz)⊗̂O(Yz)O(U ′

i)

= (ΠN0)′b⊗̂E[Y +]O(W ×Gm)⊗̂O(W×Gm)O(Yz)⊗̂O(Yz)O(U ′
i)

= (ΠN0)′b⊗̂E[Y +]O(U ′
i)

=
(
lim←−
h

Vh

)
⊗̂O(W)[z]

(O(Wi){{T, T−1}}
(Q(T ))

)
(Recall z 7→ T−1)

= lim←−
Uh⊃Wi

(
Vh⊗̂Ah[zh]

(O(Wi){{zh, z−1
h }}

(Q(z−1
h ))

))
.



56 ZACHARY FENG

By [Buz07, Theorem 3.3], we can decompose each Vh⊗̂Ah
O(Wi) into a direct sum Nh ⊕ Fh

where Nh is a projective O(Wi)-module of rank degQ, which is annihilated by Q∗(zh), and
Q∗(zh) is invertible on Fi. (Recall Q∗(T ) := T degQQ(T−1) from [Buz07, §3].) Since zh is
invertible in O(Wi){{zh, z−1

h }}, we can simplify each term in the projective limit as follows:

Vh⊗̂Ah[zh]

(O(Wi){{zh, z−1
h }}

(Q(z−1
h ))

)
= Vh⊗̂Ah[zh]

(O(Wi){{zh, z−1
h }}

(zdegQh Q(z−1
h ))

)
= Vh⊗̂Ah[zh]

(O(Wi){{zh, z−1
h }}

(Q∗(zh))

)
.

Continuing with the calculation:

Vh⊗̂Ah[zh]

(O(Wi){{zh, z−1
h }}

(Q∗(zh))

)
= Vh⊗̂Ah[zh]

(O(Wi)[zh]

(Q∗(zh))

)
=

Nh ⊕ Fh

Q∗(zh)(Nh ⊕ Fh)
=
Nh ⊕ Fh

Fh

= Nh.

Therefore, each term in the projective limit is a projective O(Wi)-module of rank degQ.
Using the maps αh and βh as before, we can construct maps in the opposite direction from
the transition maps given in the projective limit, and whose composition with the transition
maps induce the identity, and hence the transition maps are all isomorphisms. Therefore,
Γ(U ′

i ,N ) is a projective limit of rank degQ projective O(Wi)-modules, whose transition
maps are all isomorphisms, so Γ(U ′

i ,N ) has the required property itself. □

Proposition 5.17. There exists an admissible cover {Ui}i∈I of E, such that for each i ∈ I,
there exists an open affinoid Wi of W, such that κ restricts, on each irreducible component
of Ui, to a finite surjective morphism onto Wi. Furthermore, OE(Ui) is isomorphic to an
OW(Wi)-algebra of endomorphisms of a finite projective OW(Wi)-module.
[BHS17, Lemma 3.10]

Proof. Fix an admissible affinoid cover {U ′
i}i∈I of Yz which we have constructed in the

previous proposition. Set Ui := f−1(U ′
i) and Wi := g(U ′

i). Then {Ui}i∈I is an admissible
cover of E . We will prove that each Ui is affinoid, and that OE(Ui) is isomorphic to a
subalgebra of the OW(Wi)-algebra EndO(Wi)(Γ(U

′
i ,N )).

If we can do this, then by [Che04, Lemma 6.2.10], this implies that each irreducible
component of Ui map surjectively onto an irreducible component of Wi. We can choose a
refinement of our cover so that Wi is irreducible, to complete the proof.

To proceed, recall that by [BHS17, Lemma 5.6], there is an isomorphism:

OE(Ui) = O(E)⊗̂O(Yz)OYz(U
′
i).

Let M := Γ(E ,M) = Γ(Yz,N ) = Γ(W × Gm,N ). Then by [BHS17, Lemma 5.5], there is
an isomorphism of OYz(U

′
i)-modules:

Γ(Ui,M) = Γ(E ,M)⊗̂O(E)OE(Ui) =M⊗̂O(Yz)OYz(U
′
i) = Γ(U ′

i ,N ).

The right hand side is a finite projective O(Wi)-module by the previous proposition, and
hence so is the left hand side. Recall we had seen thatM can be viewed as a coherent sheaf
on the product T̂ × SpH(Kp)sph, where we note that the embedding E ↪→ T̂ × SpH(Kp)sph

identifies E with the support ofM. This implies that the action of OE(Ui) on Γ(Ui,M) is
faithful, and this induces an injective map of O(Wi)-algebras:

OE(Ui) ↪→ EndO(Wi)(Γ(U
′
i ,N )). □

Proposition 5.18. The space E is equidimensional, and has no embedded components. Fur-
thermore, the morphism f : E → Yz is finite, and the image under f of an irreducible
component of E is an irreducible component of Yz.
[BHS17, Proposition 3.11]
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Proof. Let U be an element of the cover of E from the previous proposition. Let V := κ(U).
Then B := OE(U) is an A := OW(V )-algebra acting faithfully on a projective A-module M

of finite type. If y is a point of U with image x in V , then the ring B̂y is isomorphic to a

sub-Âx-module of a free Âx-module of finite type. (We have used the fact that a projective
module of finite type over a local ring is free.)

Let p be any associated prime ideal of B̂y. Then by definition there is an embedding

B̂y/p ↪→ B̂y where we can view B̂y/p as an ideal of B̂y. Since Âx is an integral domain,

and B̂y/p is a sub-Âx-module of a free Âx-module, it is torsion-free, and hence the Krull

dimension of B̂y/p as an Âx-module is:

dimÂx
(B̂y/p) := dim(Âx/AnnÂx

(B̂y/p)) = dim(Âx).

By [Gro67, Proposition 16.1.9], this upgrades to the statement:

dimB̂y
(B̂y/p) = dim(B̂y/AnnB̂y

(B̂y/p)) = dim(Âx).

But this is just the Krull dimension of B̂y/p as a ring. Notice that the quantity dim(Âx) does
not depend on the choice of a point x in V , since V is irreducible, and hence A is an integral
domain. In fact, this quantity is independent of the choice of V , sinceW is equidimensional.

We may thus write dim(Âx) = dim(W) for any point x in V .
Recall that the ring B is equidimensional if dim(B/p) does not depend on the choice of a

minimal prime ideal p. Since minimal prime ideals are associated, and we have shown that

dim(B̂y/p) = dim(W) for any associated prime ideal p and any point y of U , this implies

the equidimensionality of B. Indeed, since dim(B̂y/p) does not depend on the choice of
associated prime p and point y of U , the only associated primes are minimal, i.e. isolated
primes, and there can be no embedded primes for dimensionality reasons.

Refer to [BHS17, Proposition 3.11] for the remaining claims. □

Proposition 5.19. The image of an irreducible component of E under κ : E → W is a
Zariski-open subset of W.
[BHS17, Corollary 3.12]

Proof. Indeed, by the previous proposition, it suffices to prove that the image under g of an
irreducible component of Yz is Zariski-open in W . The irreducible components of Yz are
themselves Fredholm hypersurfaces, since irreducible components of Fredholm hypersurfaces
are themselves such, by [Con99, Theorem 4.2.2]. The claim then follows from the proof of
[Che04, Corollary 6.4.4]. □

We have proved most of the Theorem 5.21 below.

Definition 5.20. Let z ∈ E(Qp) be a Qp-point of the eigenvariety, and let (χ, λ) be the

image of z under the embedding E(Qp) ↪→ T̂ (Qp)× (SpH(Kp)sph)(Qp). The point z is said
to be classical if there exists a non-zero T -equivariant map:

χ→ JB(H̃
0(Kp)lalg)[λ].

Let E(Qp)cl denote the subset of classical points of E(Qp).

Theorem 5.21.

(a) E is equidimensional of dimension equal to dimW. Suppose C is an irreducible component
of E, then κ(C) is a Zariski open subset of W.



58 ZACHARY FENG

(b) Let z ∈ E(Qp) be a point, and let (χ, λ) denote the image of z under the embedding

E(Qp) → T̂ (Qp) × (SpH(Kp)sph)(Qp). Suppose χ factors as χ = χalgχsm where χsm is
smooth and χalg is a strictly dominant algebraic character. Then if χ has non-critical
slope, then z is classical.

(c) The set E(Qp)cl is Zariski dense in E(Qp) and accumulates at every point of E(Qp)cl.

The accumulation property means that each point of E(Qp)cl admits a basis of affinoid

neighbourhoods V such that V ∩ E(Qp)cl is Zariski dense in V .

[NT21, Proposition 2.22]
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